@phdthesis{Li2013, author = {Li, Xiaoli}, title = {Functional analyses of ES cell pluripotency by inducible knockdown of the Polycomb group protein Pcgf6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-84015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Polycomb group (PcG) proteins are chromatin modifiers involved in heritable gene repression. Two main PcG complexes have been characterized: Polycomb repressive complex (PRC) 2 is involved in the initiation of gene silencing, whereas PRC1 participates in the stable maintenance of gene repression. Pcgf4 (Polycomb group protein, Bmi1) is one of the most studied PRC1 members with essential functions for embryonic development and adult stem cell self renewal. In embryonic stem cells (ES cells), Pcgf4 is poorly expressed while its paralogs (Pcgf1, Pcgf2, Pcgf3, Pcgf5 and Pcgf6) are expressed at higher levels. The relevance of the Pcgf paralog Pcgf6 for the maintenance of ESC pluripotency has not been addressed so far. My analyses revealed that Pcgf6 was the most expressed Pcgf paralog in undifferentiated ES cells. When ES cells differentiated, gene expression of Pcgf6 strongly declined. To investigate the functions of Pcgf6 in ES cells, we established a doxycycline (dox) inducible shRNA-targeted knockdown system according to publications by Seibler et al. (Seibler et al. 2005; Seibler et al. 2007). Following dox-induced knockdown (KD) of Pcgf6, we observed decreased ES cell colony formation. In parallel, gene expression of pluripotency markers Oct4, Nanog and Sox2 was reduced upon dox-treatment, wheras the expression of mesoderm genes such as T (Brachyury) were up-regulated. Further, microarray analysis revealed de-repression of several spermatogenesis-specic genes upon Pcgf6-KD, suggesting that Pcgf6 may play a role during spermatogenesis. Upon in vitro differentiation, Pcgf6-KD ES cells showed increased hemangioblast formation, paralleled by increased hematopoietic development. In summary, results of this study suggest that Pcgf6 is involved in maintaining ES cell identity by repressing lineage-specific gene expression in undifferentiated ES cells.}, subject = {Embryonale Stammzelle}, language = {en} } @phdthesis{Sienerth2010, author = {Sienerth, Arnold R.}, title = {Regulation of anti-inflammatory cytokine IL-10 by the Polycomb Group Protein Bmi1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49990}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Macrophages are important effector cells of the innate and adaptive immune response and exert a wide variety of immunological functions which necessitates a high level of plasticity on the chromatin level. In response to pathogen-associated molecular patterns (PAMPs) or inflammatory signals macrophages undergo a process of cellular activation which is associated with morphologic, functional and biochemical changes. Toll-like receptors (TLR) are able to sense many different PAMPs. TLR4 is an important sensor for lipopolysaccharide (LPS) which elicits a major portion of the host's inflammatory response through the activation of many different signaling pathways such as the NF-\&\#954;B and the MAPK protein kinase pathways RASRAF- MEK-ERK, p38 and JNK. Polycomb group (PcG) proteins are well known chromatin modifiers which function in large complexes and are required to maintain chromatin structure in a transcriptionally repressed state. It has previously been shown that the PcG protein Bmi1 is phosphorylated by 3pK, a downstream effector kinase of the MAPK protein kinase pathways RAS-RAF-MEK-ERK, p38 and JNK. In this work I analyzed the role of Bmi1 as a downstream effector of MAPK signaling during macrophage activation. Unexpectedly a rapid up-regulation on the Bmi1 protein level was observed in bone marrow derived macrophages (BMDMs) after LPS treatment. The Bmi1 induction was associated with transient protein phosphorylation that occured downstream of MAPK signaling. LPS treatment of BMDMs in the absence of Bmi1 resulted in a pronounced increase of IL-10 secretion. This secretion of the anti-inflammatory cytokine IL-10 was associated with increased IL-10 mRNA levels. Furthermore, siRNA mediated knock down of Bmi1 in J774A.1 macrophages also resulted in elevated IL-10 mRNA levels in response to LPS. ChIP analysis revealed that Bmi1 binds to throughout the il-10 locus. Alternative activation of wild type BMDMs via concomitant TLR4 and Fc\&\#947;R activation which triggers high IL-10 expression is paralleled by an attenuated Bmi1 protein expression. These results identify Bmi1 as a repressor of IL-10 expression during activation of macrophages.}, subject = {Interleukin 10}, language = {en} }