@article{KuemmelLindenberger2020, author = {K{\"u}mmel, Reiner and Lindenberger, Dietmar}, title = {Energy, entropy, constraints, and creativity in economic growth and crises}, series = {Entropy}, volume = {22}, journal = {Entropy}, number = {10}, issn = {1099-4300}, doi = {10.3390/e22101156}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216275}, year = {2020}, abstract = {The neoclassical mainstream theory of economic growth does not care about the First and the Second Law of Thermodynamics. It usually considers only capital and labor as the factors that produce the wealth of modern industrial economies. If energy is taken into account as a factor of production, its economic weight, that is its output elasticity, is assigned a meager magnitude of roughly 5 percent, according to the neoclassical cost-share theorem. Because of that, neoclassical economics has the problems of the "Solow Residual", which is the big difference between observed and computed economic growth, and of the failure to explain the economic recessions since World War 2 by the variations of the production factors. Having recalled these problems, we point out that technological constraints on factor combinations have been overlooked in the derivation of the cost-share theorem. Biophysical analyses of economic growth that disregard this theorem and mend the neoclassical deficiencies are sketched. They show that energy's output elasticity is much larger than its cost share and elucidate the existence of bidirectional causality between energy conversion and economic growth. This helps to understand how economic crises have been triggered and overcome by supply-side and demand-side actions. Human creativity changes the state of economic systems. We discuss the challenges to it by the risks from politics and markets in conjunction with energy sources and technologies, and by the constraints that the emissions of particles and heat from entropy production impose on industrial growth in the biosphere.}, language = {en} } @article{KuemmelLindenberger2020, author = {K{\"u}mmel, Reiner and Lindenberger, Dietmar}, title = {Energy in Growth Accounting and the Aggregation of Capital and Output}, series = {Biophysical Economics and Sustainability}, volume = {5}, journal = {Biophysical Economics and Sustainability}, doi = {10.1007/s41247-020-00068-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241135}, year = {2020}, abstract = {We review the physical aggregation of value added and capital in terms of work performance and information processing and its relation to the deflated monetary time series of output and capital. In growth accounting it complements the time series of labor and energy, measured in hours worked per year and kilowatt-hours consumed per year, respectively. This aggregation is the conceptual basis on which those energy-dependent production functions have been constructed that reproduce economic growth of major industrial countries in the 20th century with small residuals and output elasticities that are for energy much larger and for labor much smaller than the cost shares of these factors. Accounting for growth in such a way, which deviates from that of mainstream economics, may serve as a first step towards integrating the First and the Second Law of Thermodynamics into economics.}, language = {en} } @article{ShuklaMannheim2020, author = {Shukla, A. and Mannheim, K.}, title = {Gamma-ray flares from relativistic magnetic reconnection in the jet of the quasar 3C 279}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-17912-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231328}, year = {2020}, abstract = {Spinning black holes in the centres of galaxies can release powerful magnetised jets. When the jets are observed at angles of less than a few degrees to the line-of-sight, they are called blazars, showing variable non-thermal emission across the electromagnetic spectrum from radio waves to gamma rays. It is commonly believed that shock waves are responsible for this dissipation of jet energy. Here we show that gamma-ray observations of the blazar 3C 279 with the space-borne telescope Fermi-LAT reveal a characteristic peak-in-peak variability pattern on time scales of minutes expected if the particle acceleration is instead due to relativistic magnetic reconnection. The absence of gamma-ray pair attenuation shows that particle acceleration takes place at a distance of ten thousand gravitational radii from the black hole where the fluid dynamical kink instability drives plasma turbulence.}, language = {en} }