@article{GottschalkRichterZiegleretal.2019, author = {Gottschalk, Michael G. and Richter, Jan and Ziegler, Christiane and Schiele, Miriam A. and Mann, Julia and Geiger, Maximilian J. and Schartner, Christoph and Homola, Gy{\"o}rgy A. and Alpers, Georg W. and B{\"u}chel, Christian and Fehm, Lydia and Fydrich, Thomas and Gerlach, Alexander L. and Gloster, Andrew T. and Helbig-Lang, Sylvia and Kalisch, Raffael and Kircher, Tilo and Lang, Thomas and Lonsdorf, Tina B. and Pan{\´e}-Farr{\´e}, Christiane A. and Str{\"o}hle, Andreas and Weber, Heike and Zwanzger, Peter and Arolt, Volker and Romanos, Marcel and Wittchen, Hans-Ulrich and Hamm, Alfons and Pauli, Paul and Reif, Andreas and Deckert, J{\"u}rgen and Neufang, Susanne and H{\"o}fler, Michael and Domschke, Katharina}, title = {Orexin in the anxiety spectrum: association of a HCRTR1 polymorphism with panic disorder/agoraphobia, CBT treatment response and fear-related intermediate phenotypes}, series = {Translational Psychiatry}, volume = {9}, journal = {Translational Psychiatry}, doi = {10.1038/s41398-019-0415-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227479}, year = {2019}, abstract = {Preclinical studies point to a pivotal role of the orexin 1 (OX1) receptor in arousal and fear learning and therefore suggest the HCRTR1 gene as a prime candidate in panic disorder (PD) with/without agoraphobia (AG), PD/AG treatment response, and PD/AG-related intermediate phenotypes. Here, a multilevel approach was applied to test the non-synonymous HCRTR1 C/T Ile408Val gene variant (rs2271933) for association with PD/AG in two independent case-control samples (total n = 613 cases, 1839 healthy subjects), as an outcome predictor of a six-weeks exposure-based cognitive behavioral therapy (CBT) in PD/AG patients (n = 189), as well as with respect to agoraphobic cognitions (ACQ) (n = 483 patients, n = 2382 healthy subjects), fMRI alerting network activation in healthy subjects (n = 94), and a behavioral avoidance task in PD/AG pre- and post-CBT (n = 271). The HCRTR1 rs2271933 T allele was associated with PD/AG in both samples independently, and in their meta-analysis (p = 4.2 × 10-7), particularly in the female subsample (p = 9.8 × 10-9). T allele carriers displayed a significantly poorer CBT outcome (e.g., Hamilton anxiety rating scale: p = 7.5 × 10-4). The T allele count was linked to higher ACQ sores in PD/AG and healthy subjects, decreased inferior frontal gyrus and increased locus coeruleus activation in the alerting network. Finally, the T allele count was associated with increased pre-CBT exposure avoidance and autonomic arousal as well as decreased post-CBT improvement. In sum, the present results provide converging evidence for an involvement of HCRTR1 gene variation in the etiology of PD/AG and PD/AG-related traits as well as treatment response to CBT, supporting future therapeutic approaches targeting the orexin-related arousal system.}, language = {en} } @article{AkhrifRomanosDomschkeetal.2018, author = {Akhrif, Atae and Romanos, Marcel and Domschke, Katharina and Schmitt-Boehrer, Angelika and Neufang, Susanne}, title = {Fractal Analysis of BOLD Time Series in a Network Associated With Waiting Impulsivity}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01378}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189191}, pages = {1378}, year = {2018}, abstract = {Fractal phenomena can be found in numerous scientific areas including neuroscience. Fractals are structures, in which the whole has the same shape as its parts. A specific structure known as pink noise (also called fractal or 1/f noise) is one key fractal manifestation, exhibits both stability and adaptability, and can be addressed via the Hurst exponent (H). FMRI studies using H on regional fMRI time courses used fractality as an important characteristic to unravel neural networks from artificial noise. In this fMRI-study, we examined 103 healthy male students at rest and while performing the 5-choice serial reaction time task. We addressed fractality in a network associated with waiting impulsivity using the adaptive fractal analysis (AFA) approach to determine H. We revealed the fractal nature of the impulsivity network. Furthermore, fractality was influenced by individual impulsivity in terms of decreasing fractality with higher impulsivity in regions of top-down control (left middle frontal gyrus) as well as reward processing (nucleus accumbens and anterior cingulate cortex). We conclude that fractality as determined via H is a promising marker to quantify deviations in network functions at an early stage and, thus, to be able to inform preventive interventions before the manifestation of a disorder.}, language = {en} }