@techreport{GrossmannHomeyer2023, type = {Working Paper}, author = {Großmann, Marcel and Homeyer, Tobias}, title = {Emulation of Multipath Transmissions in P4 Networks with Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32209}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322095}, pages = {4}, year = {2023}, abstract = {Packets sent over a network can either get lost or reach their destination. Protocols like TCP try to solve this problem by resending the lost packets. However, retransmissions consume a lot of time and are cumbersome for the transmission of critical data. Multipath solutions are quite common to address this reliability issue and are available on almost every layer of the ISO/OSI model. We propose a solution based on a P4 network to duplicate packets in order to send them to their destination via multiple routes. The last network hop ensures that only a single copy of the traffic is further forwarded to its destination by adopting a concept similar to Bloom filters. Besides, if fast delivery is requested we provide a P4 prototype, which randomly forwards the packets over different transmission paths. For reproducibility, we implement our approach in a container-based network emulation system called Kathar{\´a}.}, language = {en} }