@article{CataldiRaschigGutmannetal.2023, author = {Cataldi, Eleonora and Raschig, Martina and Gutmann, Marcus and Geppert, Patrick T. and Ruopp, Matthias and Schock, Marvin and Gerwe, Hubert and Bertermann, R{\"u}diger and Meinel, Lorenz and Finze, Maik and Nowak-Kr{\´o}l, Agnieszka and Decker, Michael and L{\"u}hmann, Tessa}, title = {Amber Light Control of Peptide Secondary Structure by a Perfluoroaromatic Azobenzene Photoswitch}, series = {ChemBioChem}, volume = {24}, journal = {ChemBioChem}, number = {5}, doi = {10.1002/cbic.202200570}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312480}, year = {2023}, abstract = {The incorporation of photoswitches into the molecular structure of peptides and proteins enables their dynamic photocontrol in complex biological systems. Here, a perfluorinated azobenzene derivative triggered by amber light was site-specifically conjugated to cysteines in a helical peptide by perfluoroarylation chemistry. In response to the photoisomerization (trans→cis) of the conjugated azobenzene with amber light, the secondary structure of the peptide was modulated from a disorganized into an amphiphilic helical structure.}, language = {en} } @article{RaschigRamirez‐ZavalaWiestetal.2023, author = {Raschig, Martina and Ram{\´i}rez-Zavala, Bernardo and Wiest, Johannes and Saedtler, Marco and Gutmann, Marcus and Holzgrabe, Ulrike and Morschh{\"a}user, Joachim and Meinel, Lorenz}, title = {Azobenzene derivatives with activity against drug-resistant Candida albicans and Candida auris}, series = {Archiv der Pharmazie}, volume = {356}, journal = {Archiv der Pharmazie}, number = {2}, doi = {10.1002/ardp.202200463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312295}, year = {2023}, abstract = {Increasing resistance against antimycotic drugs challenges anti-infective therapies today and contributes to the mortality of infections by drug-resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'-dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole-susceptible and fluconazole-resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds.}, language = {en} }