@article{LiuMingZhangetal.2019, author = {Liu, Xiaocui and Ming, Wenbo and Zhang, Yixiao and Friedrich, Alexandra and Marder, Todd B.}, title = {Copper-Catalyzed Triboration: Straightforward, Atom-Economical Synthesis of 1,1,1-Triborylalkanes from Terminal Alkynes and HBpin}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {52}, doi = {10.1002/anie.201909376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206185}, pages = {18923-18927}, year = {2019}, abstract = {A convenient and efficient one-step synthesis of 1,1,1-triborylalkanes was achieved via sequential dehydrogenative borylation and double hydroborations of terminal alkynes with HBpin (HBpin=pinacolborane) catalyzed by inexpensive and readily available Cu(OAc)\(_2\). This process proceeds under mild conditions, furnishing 1,1,1-tris(boronates) with wide substrate scope, excellent selectivity, and good functional-group tolerance, and is applicable to gram-scale synthesis without loss of yield. The 1,1,1-triborylalkanes can be used in the preparation of α-vinylboronates and borylated cyclic compounds, which are valuable but previously rare compounds. Different alkyl groups can be introduced stepwise via base-mediated deborylative alkylation to produce racemic tertiary alkyl boronates, which can be readily transformed into useful tertiary alcohols.}, language = {en} } @article{BudimanFriedrichRadiusetal.2019, author = {Budiman, Yudha P. and Friedrich, Alexandra and Radius, Udo and Marder, Todd B.}, title = {Copper-catalysed Suzuki-Miyaura cross-coupling of highly fluorinated aryl boronate esters with aryl iodides and bromides and fluoroarene-arene π-stacking interactions in the products}, series = {ChemCatChem}, volume = {11}, journal = {ChemCatChem}, number = {21}, doi = {10.1002/cctc.201901220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204839}, pages = {5387-5396}, year = {2019}, abstract = {A combination of copper iodide and phenanthroline as the ligand is an efficient catalyst for Suzuki-Miyaura cross-coupling of highly fluorinated boronate esters (aryl-Bpin) with aryl iodides and bromides to generate fluorinated biaryls in good to excellent yields. This method represents a nice alternative to traditional cross-coupling methods which require palladium catalysts and stoichiometric amounts of silver oxide. We note that π⋅⋅⋅π stacking interactions dominate the molecular packing in the partly fluorinated biaryl crystals investigated herein. They are present either between the arene and perfluoroarene, or solely between arenes or perfluoroarenes, respectively.}, language = {en} } @article{HeRauchFriedrichetal.2019, author = {He, Jiang and Rauch, Florian and Friedrich, Alexandra and Sieh, Daniel and Ribbeck, Tatjana and Krummenacher, Ivo and Braunschweig, Holger and Finze, Maik and Marder, Todd B.}, title = {N-Heterocyclic Olefins as Electron Donors in Combination with Triarylborane Acceptors: Synthesis, Optical and Electronic Properties of D-π-A Compounds}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, doi = {10.1002/chem.201903118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204690}, pages = {13777-13784}, year = {2019}, abstract = {N-heterocyclic olefins (NHOs), relatives of N-heterocyclic carbenes (NHCs), exhibit high nucleophilicity and soft Lewis basic character. To investigate their π-electron donating ability, NHOs were attached to triarylborane π-acceptors (A) giving donor (D)-π-A compounds 1-3. In addition, an enamine π-donor analogue (4) was synthesized for comparison. UV-visible absorption studies show a larger red shift for the NHO-containing boranes than for the enamine analogue, a relative of cyclic (alkyl)(amino) carbenes (CAACs). Solvent-dependent emission studies indicate that 1-4 have moderate intramolecular charge-transfer (ICT) behavior. Electrochemical investigations reveal that the NHO-containing boranes have extremely low reversible oxidation potentials (e.g., for 3, \(E^{ox}_{1/2}\) =-0.40 V vs. ferrocene/ferrocenium, Fc/Fc\(^+\), in THF). Time-dependent (TD) DFT calculations show that the HOMOs of 1-3 are much more destabilized than that of the enamine-containing 4, which confirms the stronger donating ability of NHOs.}, language = {en} }