@article{BusseStrotmannStreckeretal.2014, author = {Busse, Kathy and Strotmann, Rainer and Strecker, Karl and Wegner, Florian and Devanathan, Vasudharani and Gohla, Antje and Sch{\"o}neberg, Torsten and Schwarz, Johannes}, title = {Adaptive Gene Regulation in the Striatum of RGS9-Deficient Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, doi = {10.1371/journal.pone.0092605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117048}, pages = {e92605}, year = {2014}, abstract = {Background: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. Results: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. Conclusion: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. Significance: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2) is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size) in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.}, language = {en} }