@article{SchlauersbachHanioLenzetal.2021, author = {Schlauersbach, Jonas and Hanio, Simon and Lenz, Bettina and Vemulapalli, Sahithya P. B. and Griesinger, Christian and P{\"o}ppler, Ann-Christin and Harlacher, Cornelius and Galli, Bruno and Meinel, Lorenz}, title = {Leveraging bile solubilization of poorly water-soluble drugs by rational polymer selection}, series = {Journal of Controlled Release}, volume = {330}, journal = {Journal of Controlled Release}, edition = {Accepted Version}, doi = {10.1016/j.jconrel.2020.12.016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296957}, pages = {36-48}, year = {2021}, abstract = {Poorly water-soluble drugs frequently solubilize into bile colloids and this natural mechanism is key for efficient bioavailability. We tested the impact of pharmaceutical polymers on this solubilization interplay using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and by assessing the flux across model membranes. Eudragit E, Soluplus, and a therapeutically used model polymer, Colesevelam, impacted the bile-colloidal geometry and molecular interaction. These polymer-induced changes reduced the flux of poorly water-soluble and bile interacting drugs (Perphenazine, Imatinib) but did not impact the flux of bile non-interacting Metoprolol. Non-bile interacting polymers (Kollidon VA 64, HPMC-AS) neither impacted the flux of colloid-interacting nor colloid-non-interacting drugs. These insights into the drug substance/polymer/bile colloid interplay potentially point towards a practical optimization parameter steering formulations to efficient bile-solubilization by rational polymer selection.}, language = {en} }