@phdthesis{Ehbets2016, author = {Ehbets, Julia}, title = {(β-AMINOALKYL)Silane: Synthese und Hydrolyseuntersuchungen von Cα-, Cβ-, Cγ- UND Cζ-funktionalisierten Alkoxy(Aminoalkyl)Silanen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133071}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit behandelt die Synthese sowie die Eigenschaften einer Serie von organofunktionellen α-, β-, γ- und ζ-Silanen, mit einem Fokus auf Alkoxy(aminoalkyl)silanen. Der Großteil dieser Modellstrukturen wurde anschließend hinsichtlich ihrer Hydrolysekinetik in Abh{\"a}ngigkeit der Art der funktionellen Gruppe X (NMe3+, N(H)COOMe, N(Me)COOMe, NH2, N(H)Me, NMe2, Pip, Me), des Abstandes des Substituenten X zu dem Silicium-Atom (α-, β-, γ- und ζ-Position), der Alkoxy-Abgangsgruppe am Silicium-Atom (MeO, iPrO, tBuO) und des pD-Wertes der Reaktionsl{\"o}sung systematisch untersucht. Eine große Herausforderung dieser Studie war die Synthese von β-Amino-funktionalisierten Alkoxysilanen, deren Chemie aufgrund ihrer Labilit{\"a}t bisher kaum erforscht ist. Die einzigen literaturbekannten Vertreter stellten bislang das Trialkoxysilan (EtO)3Si(CH2)2NH2 (1) und sein Dialkoxy-Derivat (EtO)2SiMe(CH2)2NH2 (2) dar, welche durch Reaktion des entsprechenden 2-(Chlorethyl)silans mit Ammoniak unter hohem Druck im Autoklaven zug{\"a}nglich sind. Unter Verwendung dieser Synthesemethode konnte sowohl die Synthese der Silane 1 und 2 reproduziert, als auch das Trimethoxy-Analogon (MeO)3Si(CH2)2NH2 (3) erstmals dargestellt werden. Dar{\"u}ber hinaus wurde eine Serie von organofunktionellen Monoalkoxysilanen des Typs RORSiMe(CH2)2X und ROSiMe2C(H)MeCH2X (4b-18b) im pr{\"a}parativen Maßstab analyserein dargestellt. Des Weiteren wurden die entsprechenden α-Silane 8a, 11a, 14a und 15a, die γ-Silane 6c, 8c, 11c, 13c-15c und 18c sowie die ζ-Silane 19 und 20 erstmals dargestellt. Weiterhin wurden die bereits literaturbekannten α-Silane 16a-18a und γ-Silane 7c, 16c und 17c f{\"u}r die Verwendung in den Hydrolyseexperimenten synthetisiert. Die Charakterisierung aller im Rahmen dieser Arbeit synthetisierten Verbindungen erfolgte mittels NMR-Spektroskopie (1H-, 13C-, 15N- und 29Si-NMR) und Elementaranalysen (C, H, N) bzw. HRMS-Experimente. Die hydrolytische Spaltung der Si-OC-Bindung in Alkoxy(aminoalkyl)silanen stellt einen technisch sehr wichtigen Schl{\"u}sselschritt in der Synthese von Amino-funktionalisierten Polysiloxanen dar. Um den Mechanismus dieser Si-OC-Bindungsspaltung besser zu verstehen, wurden die Alkoxysilane 4b, 4c, 5b, 6b, 6c, 7b, 7c, 8a-8c, 9b, 11a-11c, 12b, 14a-14c, 15a-15c, 16a-16c, 17a-17c, 18a-18c, 19 und 20 hinsichtlich ihrer Hydrolysekinetik in CD3CN/D2O unter sauren und basischen Bedingungen mittels 1H-NMR-Spektroskopie untersucht. Die Ergebnisse dieser Struktur-Reaktivit{\"a}ts-Studie zeigten, dass die beobachteten unterschiedlichen Hydrolysegeschwindigkeiten das Resultat mehrerer Faktoren sind, wie beispielsweise elektronische und sterische Effekte, der große Einflusses des pD-Wertes und auch intramolekulare N-H∙∙∙O-Wasserstoffbr{\"u}ckenbindungen zwischen der protonierten Amino-Gruppe und der Alkoxy-Abgangsgruppe. Da der Einfluss dieser Effekte auf die Reaktivit{\"a}t der untersuchten α-, β-, γ- und ζ-Silane sehr unterschiedlich ist, kann kein klarer Zusammenhang zwischen der Hydrolysereaktivit{\"a}t und der Positionierung der stickstoff-haltigen funktionellen Gruppe (α-, β-, γ- und ζ-Position) erkannt werden. Die jeweils beobachtete Reaktivit{\"a}t entspricht vielmehr einer Summe aller zuvor genannten Teileffekte. Die Erkenntnisse, die im Rahmen dieser Arbeit erhalten wurden, erm{\"o}glichen ein verbessertes grundlegendes Verst{\"a}ndnis der Reaktivit{\"a}t von funktionalisierten α-, β-, γ- und ζ-Silanen, und sind f{\"u}r die Silicon-Industrie von großem Interesse, da sie eine gezieltere Anwendung der α-, β- und γ-Aminosilane in der Synthese von technisch wichtigen Amino-funktionalisierten Polysiloxanen erlauben.}, subject = {Hydrolyse}, language = {de} } @article{SawatzkyDrakopoulosRoelzetal.2016, author = {Sawatzky, Edgar and Drakopoulos, Antonios and R{\"o}lz, Martin and Sotriffer, Christoph and Engels, Bernd and Decker, Michael}, title = {Experimental and theoretical investigations into the stability of cyclic aminals}, series = {Beilstein Journal of Organic Chemistry}, volume = {12}, journal = {Beilstein Journal of Organic Chemistry}, doi = {10.3762/bjoc.12.221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160976}, pages = {2280-2292}, year = {2016}, abstract = {Background: Cyclic aminals are core features of natural products, drug molecules and important synthetic intermediates. Despite their relevance, systematic investigations into their stability towards hydrolysis depending on the pH value are lacking. Results: A set of cyclic aminals was synthesized and their stability quantified by kinetic measurements. Steric and electronic effects were investigated by choosing appropriate groups. Both molecular mechanics (MM) and density functional theory (DFT) based studies were applied to support and explain the results obtained. Rapid decomposition is observed in acidic aqueous media for all cyclic aminals which occurs as a reversible reaction. Electronic effects do not seem relevant with regard to stability, but the magnitude of the conformational energy of the ring system and pK a values of the N-3 nitrogen atom. Conclusion: Cyclic aminals are stable compounds when not exposed to acidic media and their stability is mainly dependent on the conformational energy of the ring system. Therefore, for the preparation and work-up of these valuable synthetic intermediates and natural products, appropriate conditions have to be chosen and for application as drug molecules their sensitivity towards hydrolysis has to be taken into account.}, language = {en} }