@article{KarabegGrauthoffKollertetal.2013, author = {Karabeg, Margherita M. and Grauthoff, Sandra and Kollert, Sina Y. and Weidner, Magdalena and Heiming, Rebecca S. and Jansen, Friederike and Popp, Sandy and Kaiser, Sylvia and Lesch, Klaus-Peter and Sachser, Norbert and Schmitt, Angelika G. and Lewejohann, Lars}, title = {5-HTT Deficiency Affects Neuroplasticity and Increases Stress Sensitivity Resulting in Altered Spatial Learning Performance in the Morris Water Maze but Not in the Barnes Maze}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0078238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129978}, pages = {e78238}, year = {2013}, abstract = {The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in na{\"i}ve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM.}, language = {en} } @article{HohoffGorjiKaiseretal.2013, author = {Hohoff, Christa and Gorji, Ali and Kaiser, Sylvia and Willscher, Edith and Korsching, Eberhard and Ambr{\´e}e, Oliver and Arolt, Volker and Lesch, Klaus-Peter and Sachser, Norbert and Deckert, J{\"u}rgen and Lewejohann, Lars}, title = {Effect of Acute Stressor and Serotonin Transporter Genotype on Amygdala First Wave Transcriptome in Mice}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0058880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131040}, pages = {e58880}, year = {2013}, abstract = {The most prominent brain region evaluating the significance of external stimuli immediately after their onset is the amygdala. Stimuli evaluated as being stressful actuate a number of physiological processes as an immediate stress response. Variation in the serotonin transporter gene has been associated with increased anxiety- and depression-like behavior, altered stress reactivity and adaptation, and pathophysiology of stress-related disorders. In this study the instant reactions to an acute stressor were measured in a serotonin transporter knockout mouse model. Mice lacking the serotonin transporter were verified to be more anxious than their wild-type conspecifics. Genome-wide gene expression changes in the amygdala were measured after the mice were subjected to control condition or to an acute stressor of one minute exposure to water. The dissection of amygdalae and stabilization of RNA was conducted within nine minutes after the onset of the stressor. This extremely short protocol allowed for analysis of first wave primary response genes, typically induced within five to ten minutes of stimulation, and was performed using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays. RNA profiling revealed a largely new set of differentially expressed primary response genes between the conditions acute stress and control that differed distinctly between wild-type and knockout mice. Consequently, functional categorization and pathway analysis indicated genes related to neuroplasticity and adaptation in wild-types whereas knockouts were characterized by impaired plasticity and genes more related to chronic stress and pathophysiology. Our study therefore disclosed different coping styles dependent on serotonin transporter genotype even directly after the onset of stress and accentuates the role of the serotonergic system in processing stressors and threat in the amygdala. Moreover, several of the first wave primary response genes that we found might provide promising targets for future therapeutic interventions of stress-related disorders also in humans.}, language = {en} }