@article{JakobsonVaahteraToldseppetal.2016, author = {Jakobson, Liina and Vaahtera, Lauri and T{\~o}ldsepp, Kadri and Nuhkat, Maris and Wang, Cun and Wang, Yuh-Shuh and H{\~o}rak, Hanna and Valk, Ervin and Pechter, Priit and Sindarovska, Yana and Tang, Jing and Xiao, Chuanlei and Xu, Yang and Talas, Ulvi Gerst and Garc{\´i}a-Sosa, Alfonso T. and Kangasj{\"a}rvi, Saijaliisa and Maran, Uko and Remm, Maido and Roelfsema, M. Rob G. and Hu, Honghong and Kangasj{\"a}rvi, Jaakko and Loog, Mart and Schroeder, Julian I. and Kollist, Hannes and Brosch{\´e}, Mikael}, title = {Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO\(_{2}\) Signaling}, series = {PLoS Biology}, volume = {14}, journal = {PLoS Biology}, number = {12}, doi = {10.1371/journal.pbio.2000322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166657}, pages = {e2000322}, year = {2016}, abstract = {Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO\(_{2}\) for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO\(_{2}\)-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO\(_{2}\)-insensitivity phenotypes of a mutant cis (CO\(_{2}\)-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)—a central node in guard cell CO\(_{2}\) signaling—and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO\(_{2}\) signaling controls plant water management.}, language = {en} }