@article{KilianWehmeierWahletal.2016, author = {Kilian, Yvonne and Wehmeier, Udo F. and Wahl, Patrick and Mester, Joachim and Hilberg, Thomas and Sperlich, Billy}, title = {Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children}, series = {Frontiers in Physiology}, volume = {7}, journal = {Frontiers in Physiology}, number = {92}, doi = {10.3389/fphys.2016.00092}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165261}, year = {2016}, abstract = {Aim: The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Methods: Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml•min-1•kg-1 peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90-95\% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60\% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. Results: HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30′, 60′, 180′) and HVT (d3, 0′, 60′). Conclusion: Results of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.}, language = {en} } @article{DuezelvanPraagSendtner2016, author = {D{\"u}zel, Emrah and van Praag, Henriette and Sendtner, Michael}, title = {Can physical exercise in old age improve memory and hippocampal function?}, series = {Brain}, volume = {139}, journal = {Brain}, number = {3}, doi = {10.1093/brain/awv407}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190721}, pages = {662-673}, year = {2016}, abstract = {Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer's disease. While the long-term health-promoting and protective effects of exercise are encouraging, it's potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry—brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer's disease pathology, vascular and metabolic risk factors and genetic variability.}, language = {en} }