@article{SteigerwaldMuellerJohannesetal.2016, author = {Steigerwald, Frank and M{\"u}ller, Lorenz and Johannes, Silvia and Matthies, Cordula and Volkmann, Jens}, title = {Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device}, series = {Movement Disorders}, volume = {31}, journal = {Movement Disorders}, number = {8}, doi = {10.1002/mds.26669}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187683}, pages = {1240-1243}, year = {2016}, abstract = {Introduction A novel neurostimulation system allows steering current in horizontal directions by combining segmented leads and multiple independent current control. The aim of this study was to evaluate directional DBS effects on parkinsonian motor features and adverse effects of subthalamic neurostimulation. Methods Seven PD patients implanted with the novel directional DBS system for bilateral subthalamic DBS underwent an extended monopolar review session during the first postoperative week, in which current thresholds were determined for rigidity control and stimulation-induced adverse effects using either directional or ring-mode settings. Results Effect or adverse effect thresholds were modified by directional settings for each of the 14 STN leads. Magnitude of change varied markedly between leads, as did orientation of optimal horizontal current steering. Conclusion Directional current steering through chronically implanted segmented electrodes is feasible, alters adverse effect and efficacy thresholds in a highly individual manner, and expands the therapeutic window in a monopolar review as compared to ring-mode DBS.}, language = {en} } @article{IsaiasTrujilloSummersetal.2016, author = {Isaias, Ioannis U. and Trujillo, Paula and Summers, Paul and Marotta, Giorgio and Mainardi, Luca and Pezzoli, Gianni and Zecca, Luigi and Costa, Antonella}, title = {Neuromelanin Imaging and Dopaminergic Loss in Parkinson's Disease}, series = {Frontiers in Aging Neuroscience}, volume = {8}, journal = {Frontiers in Aging Neuroscience}, number = {196}, doi = {10.3389/fnagi.2016.00196}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164046}, year = {2016}, abstract = {Parkinson's disease (PD) is a progressive neurodegenerative disorder in which the major pathologic substrate is a loss of dopaminergic neurons from the substantia nigra. Our main objective was to determine the correspondence between changes in the substantia nigra, evident in neuromelanin and iron sensitive magnetic resonance imaging (MRI), and dopaminergic striatal innervation loss in patients with PD. Eighteen patients and 18 healthy control subjects were included in the study. Using neuromelanin-MRI, we measured the volume of the substantia nigra and the contrast-to-noise-ratio between substantia nigra and a background region. The apparent transverse relaxation rate and magnetic susceptibility of the substantia nigra were calculated from dual-echo MRI. Striatal dopaminergic innervation was measured as density of dopamine transporter (DAT) by means of single-photon emission computed tomography and [123I] N-ω-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) tropane. Patients showed a reduced volume of the substantia nigra and contrast-to-noise-ratio and both positively correlated with the corresponding striatal DAT density. The apparent transverse relaxation rate and magnetic susceptibility values of the substantia nigra did not differ between patients and healthy controls. The best predictor of DAT reduction was the volume of the substantia nigra. Clinical and imaging correlations were also investigated for the locus coeruleus. Our results suggest that neuromelanin-MRI can be used for quantifying substantia nigra pathology in PD where it closely correlates with dopaminergic striatal innervation loss. Longitudinal studies should further explore the role of Neuromelanin-MRI as an imaging biomarker of PD, especially for subjects at risk of developing the disease.}, language = {en} }