@phdthesis{Karl2016, author = {Karl, Stefan}, title = {Control Centrality in Non-Linear Biological Networks}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150838}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Biological systems such as cells or whole organisms are governed by complex regulatory networks of transcription factors, hormones and other regulators which determine the behavior of the system depending on internal and external stimuli. In mathematical models of these networks, genes are represented by interacting "nodes" whose "value" represents the activity of the gene. Control processes in these regulatory networks are challenging to elucidate and quantify. Previous control centrality metrics, which aim to mathematically capture the ability of individual nodes to control biological systems, have been found to suffer from problems regarding biological plausibility. This thesis presents a new approach to control centrality in biological networks. Three types of network control are distinguished: Total control centrality quantifies the impact of gene mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signaling cascades (e.g control in mouse colon stem cells). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Well-defined network manipulations define all three centralities not only for nodes, but also for the interactions between them, enabling detailed insights into network pathways. The calculation of the new metrics is made possible by substantial computational improvements in the simulation algorithms for several widely used mathematical modeling paradigms for genetic regulatory networks, which are implemented in the regulatory network simulation framework Jimena created for this thesis. Applying the new metrics to biological networks and artificial random networks shows how these mathematical concepts correspond to experimentally verified gene functions and signaling pathways in immunity and cell differentiation. In contrast to controversial previous results even from the Barab{\´a}si group, all results indicate that the ability to control biological networks resides in only few driver nodes characterized by a high number of connections to the rest of the network. Autoregulatory loops strongly increase the controllability of the network, i.e. its ability to control itself, and biological networks are characterized by high controllability in conjunction with high robustness against mutations, a combination that can be achieved best in sparsely connected networks with densities (i.e. connections to nodes ratios) around 2.0 - 3.0. The new concepts are thus considerably narrowing the gap between network science and biology and can be used in various areas such as system modeling, plausibility trials and system analyses. Medical applications discussed in this thesis include the search for oncogenes and pharmacological targets, as well their functional characterization.}, subject = {Bioinformatik}, language = {en} }