@article{KarabegGrauthoffKollertetal.2013, author = {Karabeg, Margherita M. and Grauthoff, Sandra and Kollert, Sina Y. and Weidner, Magdalena and Heiming, Rebecca S. and Jansen, Friederike and Popp, Sandy and Kaiser, Sylvia and Lesch, Klaus-Peter and Sachser, Norbert and Schmitt, Angelika G. and Lewejohann, Lars}, title = {5-HTT Deficiency Affects Neuroplasticity and Increases Stress Sensitivity Resulting in Altered Spatial Learning Performance in the Morris Water Maze but Not in the Barnes Maze}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0078238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129978}, pages = {e78238}, year = {2013}, abstract = {The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in na{\"i}ve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM.}, language = {en} } @article{PoppSchmittBoehrerLangeretal.2021, author = {Popp, Sandy and Schmitt-B{\"o}hrer, Angelika and Langer, Simon and Hofmann, Ulrich and Hommers, Leif and Schuh, Kai and Frantz, Stefan and Lesch, Klaus-Peter and Frey, Anna}, title = {5-HTT Deficiency in Male Mice Affects Healing and Behavior after Myocardial Infarction}, series = {Journal of Clinical Medicine}, volume = {10}, journal = {Journal of Clinical Medicine}, number = {14}, issn = {2077-0383}, doi = {10.3390/jcm10143104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242739}, year = {2021}, abstract = {Anxiety disorders and depression are common comorbidities in cardiac patients. Mice lacking the serotonin transporter (5-HTT) exhibit increased anxiety-like behavior. However, the role of 5-HTT deficiency on cardiac aging, and on healing and remodeling processes after myocardial infarction (MI), remains unclear. Cardiological evaluation of experimentally na{\"i}ve male mice revealed a mild cardiac dysfunction in ≥4-month-old 5-HTT knockout (-/-) animals. Following induction of chronic cardiac dysfunction (CCD) by MI vs. sham operation 5-HTT-/- mice with infarct sizes >30\% experienced 100\% mortality, while 50\% of 5-HTT+/- and 37\% of 5-HTT+/+ animals with large MI survived the 8-week observation period. Surviving (sham and MI < 30\%) 5-HTT-/- mutants displayed reduced exploratory activity and increased anxiety-like behavior in different approach-avoidance tasks. However, CCD failed to provoke a depressive-like behavioral response in either 5-Htt genotype. Mechanistic analyses were performed on mice 3 days post-MI. Electrocardiography, histology and FACS of inflammatory cells revealed no abnormalities. However, gene expression of inflammation-related cytokines (TGF-β, TNF-α, IL-6) and MMP-2, a protein involved in the breakdown of extracellular matrix, was significantly increased in 5-HTT-/- mice after MI. This study shows that 5-HTT deficiency leads to age-dependent cardiac dysfunction and disrupted early healing after MI probably due to alterations of inflammatory processes in mice.}, language = {en} } @article{ZieglerEhlisWeberetal.2021, author = {Ziegler, Georg C. and Ehlis, Ann-Christine and Weber, Heike and Vitale, Maria Rosaria and Z{\"o}ller, Johanna E. M. and Ku, Hsing-Ping and Schiele, Miriam A. and K{\"u}rbitz, Laura I. and Romanos, Marcel and Pauli, Paul and Kalisch, Raffael and Zwanzger, Peter and Domschke, Katharina and Fallgatter, Andreas J. and Reif, Andreas and Lesch, Klaus-Peter}, title = {A Common CDH13 Variant is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD}, series = {Genes}, volume = {12}, journal = {Genes}, number = {9}, issn = {2073-4425}, doi = {10.3390/genes12091356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245220}, year = {2021}, abstract = {The cell—cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD.}, language = {en} } @article{ConzelmannReifJacobetal.2012, author = {Conzelmann, Annette and Reif, Andreas and Jacob, Christian and Weyers, Peter and Lesch, Klaus-Peter and Lutz, Beat and Pauli, Paul}, title = {A polymorphism in the gene of the endocannabinoid-degrading enzyme FAAH (FAAH C385A) is associated with emotional-motivational reactivity}, series = {Psychopharmacology}, volume = {224}, journal = {Psychopharmacology}, number = {4}, doi = {10.1007/s00213-012-2785-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126845}, pages = {573-579}, year = {2012}, abstract = {RATIONALE: The endocannabinoid (eCB) system is implicated in several psychiatric disorders. Investigating emotional-motivational dysfunctions as underlying mechanisms, a study in humans revealed that in the C385A polymorphism of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the eCB anandamide (AEA), A carriers, who are characterized by increased signaling of AEA as compared to C/C carriers, exhibited reduced brain reactivity towards unpleasant faces and enhanced reactivity towards reward. However, the association of eCB system with emotional-motivational reactivity is complex and bidirectional due to upcoming compensatory processes. OBJECTIVES: Therefore, we further investigated the relationship of the FAAH polymorphism and emotional-motivational reactivity in humans. METHODS: We assessed the affect-modulated startle, and ratings of valence and arousal in response to higher arousing pleasant, neutral, and unpleasant pictures in 67 FAAH C385A C/C carriers and 45 A carriers. RESULTS: Contrarily to the previous functional MRI study, A carriers compared to C/C carriers exhibited an increased startle potentiation and therefore emotional responsiveness towards unpleasant picture stimuli and reduced startle inhibition indicating reduced emotional reactivity in response to pleasant pictures, while both groups did not differ in ratings of arousal and valence. CONCLUSIONS: Our findings emphasize the bidirectionality and thorough examination of the eCB system's impact on emotional reactivity as a central endophenotype underlying various psychiatric disorders.}, language = {en} } @article{ConzelmannReifJacobetal.2012, author = {Conzelmann, Annette and Reif, Andreas and Jacob, Christian and Weyers, Peter and Lesch, Klaus-Peter and Lutz, Beat and Pauli, Paul}, title = {A polymorphism in the gene of the endocannabinoid-degrading enzyme FAAH (FAAH C385A) is associated with emotional-motivational reactivity}, series = {Psychopharmacology}, volume = {224}, journal = {Psychopharmacology}, number = {4}, doi = {10.1007/s00213-012-2785-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129936}, pages = {573-579}, year = {2012}, abstract = {Rationale The endocannabinoid (eCB) system is implicated in several psychiatric disorders. Investigating emotional-motivational dysfunctions as underlying mechanisms, a study in humans revealed that in the C385A polymorphism of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the eCB anandamide (AEA), A carriers, who are characterized by increased signaling of AEA as compared to C/C carriers, exhibited reduced brain reactivity towards unpleasant faces and enhanced reactivity towards reward. However, the association of eCB system with emotional-motivational reactivity is complex and bidirectional due to upcoming compensatory processes. Objectives Therefore, we further investigated the relationship of the FAAH polymorphism and emotional-motivational reactivity in humans. Methods We assessed the affect-modulated startle, and ratings of valence and arousal in response to higher arousing pleasant, neutral, and unpleasant pictures in 67 FAAH C385A C/C carriers and 45 A carriers. Results Contrarily to the previous functional MRI study, A carriers compared to C/C carriers exhibited an increased startle potentiation and therefore emotional responsiveness towards unpleasant picture stimuli and reduced startle inhibition indicating reduced emotional reactivity in response to pleasant pictures, while both groups did not differ in ratings of arousal and valence. Conclusions Our findings emphasize the bidirectionality and thorough examination of the eCB system's impact on emotional reactivity as a central endophenotype underlying various psychiatric disorders.}, language = {en} } @article{RantamaekiVesaAntilaetal.2011, author = {Rantam{\"a}ki, Tomi and Vesa, Liisa and Antila, Hanna and Di Lieto, Antonio and Tammela, P{\"a}ivi and Schmitt, Angelika and Lesch, Klaus-Peter and Rios, Maribel and Castr{\´e}n, Eero}, title = {Antidepressant Drugs Transactivate TrkB Neurotrophin Receptors in the Adult Rodent Brain Independently of BDNF and Monoamine Transporter Blockade}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0020567}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133746}, pages = {e20567}, year = {2011}, abstract = {Background: Antidepressant drugs (ADs) have been shown to activate BDNF (brain-derived neurotrophic factor) receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their neurotrophin ligands. Methodology: In this study we examined the role of BDNF, TrkB kinase activity and monoamine reuptake in the AD-induced TrkB activation in vivo and in vitro by employing several transgenic mouse models, cultured neurons and TrkB-expressing cell lines. Principal Findings: Using a chemical-genetic TrkB(F616A) mutant and TrkB overexpressing mice, we demonstrate that ADs specifically activate both the maturely and immaturely glycosylated forms of TrkB receptors in the brain in a TrkB kinase dependent manner. However, the tricyclic AD imipramine readily induced the phosphorylation of TrkB receptors in conditional bdnf(-/-) knock-out mice (132.4+/-8.5\% of control; P = 0.01), indicating that BDNF is not required for the TrkB activation. Moreover, using serotonin transporter (SERT) deficient mice and chemical lesions of monoaminergic neurons we show that neither a functional SERT nor monoamines are required for the TrkB phosphorylation response induced by the serotonin selective reuptake inhibitors fluoxetine or citalopram, or norepinephrine selective reuptake inhibitor reboxetine. However, neither ADs nor monoamine transmitters activated TrkB in cultured neurons or cell lines expressing TrkB receptors, arguing that ADs do not directly bind to TrkB. Conclusions: The present findings suggest that ADs transactivate brain TrkB receptors independently of BDNF and monoamine reuptake blockade and emphasize the need of an intact tissue context for the ability of ADs to induce TrkB activity in brain.}, language = {en} } @article{VeniaminovaCespuglioCheungetal.2017, author = {Veniaminova, Ekaterina and Cespuglio, Raymond and Cheung, Chi Wai and Umriukhin, Alexei and Markova, Nataliia and Shevtsova, Elena and Lesch, Klaus-Peter and Anthony, Daniel C. and Strekalova, Tatyana}, title = {Autism-like behaviours and memory deficits result from a Western Diet in mice}, series = {Neural Plasticity}, journal = {Neural Plasticity}, doi = {10.1155/2017/9498247}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158211}, pages = {9498247}, year = {2017}, abstract = {Nonalcoholic fatty liver disease, induced by a Western diet (WD), evokes central and peripheral inflammation that is accompanied by altered emotionality. These changes can be associated with abnormalities in social behaviour, hippocampus-dependent cognitive functions, and metabolism. Female C57BL/6J mice were fed with a regular chow or with a WD containing 0.2\% of cholesterol and 21\% of saturated fat for three weeks. WD-treated mice exhibited increased social avoidance, crawl-over and digging behaviours, decreased body-body contacts, and hyperlocomotion. The WD-fed group also displayed deficits in hippocampal-dependent performance such as contextual memory in a fear conditioning and pellet displacement paradigms. A reduction in glucose tolerance and elevated levels of serum cholesterol and leptin were also associated with the WD. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1a) mRNA, a marker of mitochondrial activity, was decreased in the prefrontal cortex, hippocampus, hypothalamus, and dorsal raphe, suggesting suppressed brain mitochondrial functions, but not in the liver. This is the first report to show that a WD can profoundly suppress social interactions and induce dominant-like behaviours in na{\"i}ve adult mice. The spectrum of behaviours that were found to be induced are reminiscent of symptoms associated with autism, and, if paralleled in humans, suggest that a WD might exacerbate autism spectrum disorder.}, language = {en} } @article{BoddenRichterSchreiberetal.2015, author = {Bodden, Carina and Richter, S. Helene and Schreiber, Rebecca S. and Kloke, Vanessa and Gerß, Joachim and Palme, Rupert and Lesch, Klaus-Peter and Lewejohann, Lars and Kaiser, Sylvia and Sachser, Norbert}, title = {Benefits of adversity?! How life history affects the behavioral profile of mice varying in serotonin transporter genotype}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, number = {47}, doi = {10.3389/fnbeh.2015.00047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143723}, year = {2015}, abstract = {Behavioral profiles are influenced by both positive and negative experiences as well as the genetic disposition. Traditionally, accumulating adversity over lifetime is considered to predict increased anxiety like behavior ("allostatic load"). The alternative "mismatch hypothesis" suggests increased levels of anxiety if the early environment differs from the later-life environment. Thus, there is a need for a whole-life history approach to gain a deeper understanding of how behavioral profiles are shaped. The aim of this study was to elucidate the effects of life history on the behavioral profile of mice varying in serotonin transporter (5-HIT) genotype, an established mouse model of increased anxiety-like behavior. For this purpose, mice grew up under either adverse or beneficial conditions during early phases of life. In adulthood, they were further subdivided so as to face a situation that either matched or mismatched the condition experienced so far, resulting in four different life histories. Subsequently, mice were tested for their anxiety-like and exploratory behavior. The main results were: (1) Life history profoundly modulated the behavioral profile. Surprisingly, mice that experienced early beneficial and later escapable adverse conditions showed less anxiety-like and more exploratory behavior compared to mice of other life histories. (2) Genotype significantly influenced the behavioral profile, with homozygous 5-HTT knockout mice displaying highest levels of anxiety-like and lowest levels of exploratory behavior. Our findings concerning life history indicate that the absence of adversity does not necessarily cause lower levels of anxiety than accumulating adversity. Rather, some adversity may be beneficial, particularly when following positive events. Altogether, we conclude that for an understanding of behavioral profiles, it is not sufficient to look at experiences during single phases of life, but the whole life history has to be considered.}, language = {en} } @article{EngeFleischhauerGaertneretal.2016, author = {Enge, S{\"o}ren and Fleischhauer, Monika and G{\"a}rtner, Anne and Reif, Andreas and Lesch, Klaus-Peter and Kliegel, Matthias and Strobel, Alexander}, title = {Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {370}, doi = {10.3389/fnhum.2016.00370}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165176}, year = {2016}, abstract = {Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements.}, language = {en} } @article{DrgonovaWaltherHartsteinetal.2016, author = {Drgonova, Jana and Walther, Donna and Hartstein, G Luke and Bukhari, Mohammad O and Baumann, Michael H and Katz, Jonathan and Hall, F Scott and Arnold, Elizabeth R and Flax, Shaun and Riley, Anthony and Rivero, Olga and Lesch, Klaus-Peter and Troncoso, Juan and Ranscht, Barbara and Uhl, George R}, title = {Cadherin 13: Human cis-Regulation and Selectively Altered Addiction Phenotypes and Cerebral Cortical Dopamine in Knockout Mice}, series = {Molecular Medicine}, volume = {22}, journal = {Molecular Medicine}, doi = {10.2119/molmed.2015.00170}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165842}, pages = {537-547}, year = {2016}, abstract = {The Cadherin 13 (CDH13) gene encodes a cell adhesion molecule likely to influence development and connections of brain circuits that modulate addiction, locomotion and cognition, including those that involve midbrain dopamine neurons. Human CDH13 mRNA expression differs by more than 80\% in postmortem cerebral cortical samples from individuals with different CDH13 genotypes, supporting examination of mice with altered CDH13 expression as models for common human variation at this locus. Constitutive CDH13 knockout mice display evidence for changed cocaine reward: shifted dose response relationship in tests of cocaine-conditioned place preference using doses that do not alter cocaine-conditioned taste aversion. Reduced adult CDH13 expression in conditional knockouts also alters cocaine reward in ways that correlate with individual differences in cortical CDH13 mRNA levels. In control and comparison behavioral assessments, knockout mice display modestly quicker acquisition of rotarod and water maze tasks, with a trend toward faster acquisition of 5-choice serial reaction time tasks that otherwise displayed no genotype-related differences. They display significant differences in locomotion in some settings, with larger effects in males. In assessments of brain changes that might contribute to these behavioral differences, there are selective alterations of dopamine levels, dopamine/metabolite ratios, dopaminergic fiber densities and mRNA encoding the activity dependent transcription factor npas4 in cerebral cortex of knockout mice. These novel data and previously reported human associations of CDH13 variants with addiction, individual differences in responses to stimulant administration and attention deficit hyperactivity disorder (ADHD) phenotypes suggest that levels of CDH13 expression, through mechanisms likely to include effects on mesocortical dopamine, influence stimulant reward and may contribute modestly to cognitive and locomotor phenotypes relevant to ADHD.}, language = {en} } @article{FereroRiveroWaeldchenetal.2017, author = {Ferero, Andrea and Rivero, Olga and W{\"a}ldchen, Sina and Ku, Hsing-Ping and Kiser, Dominik P. and G{\"a}rtner, Yvonne and Pennington, Laura S. and Waider, Jonas and Gaspar, Patricia and Jansch, Charline and Edenhofer, Frank and Resink, Th{\´e}r{\`e}se J. and Blum, Robert and Sauer, Markus and Lesch, Klaus-Peter}, title = {Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain}, series = {Frontiers in Cellular Neuroscience}, volume = {11}, journal = {Frontiers in Cellular Neuroscience}, number = {307}, doi = {10.3389/fncel.2017.00307}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170313}, year = {2017}, abstract = {Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders.}, language = {en} } @article{AraragiMlinarBaccinietal.2013, author = {Araragi, Naozumi and Mlinar, Boris and Baccini, Gilda and Gutknecht, Lise and Lesch, Klaus-Peter and Corradetti, Renato}, title = {Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis}, series = {Frontiers in Neuropharmacology}, journal = {Frontiers in Neuropharmacology}, doi = {10.3389/fphar.2013.00097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97098}, year = {2013}, abstract = {Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert-/-) and tryptophan hydroxylase-2 knockout (Tph2-/-) mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2-/- mice and Sert-/- mice, respectively. While 5-HT neurons from Tph2-/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert-/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2-/- and Sert-/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.}, language = {en} } @article{ClineCostaNunesCespuglioetal.2015, author = {Cline, Brandon H. and Costa-Nunes, Joao P. and Cespuglio, Raymond and Markova, Natalyia and Santos, Ana I. and Bukhman, Yury V. and Kubatiev, Aslan and Steinbusch, Harry W. M. and Lesch, Klaus-Peter and Strekalova, Tatyana}, title = {Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, number = {37}, doi = {10.3389/fnbeh.2015.00037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143992}, year = {2015}, abstract = {Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naive DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naive animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies.}, language = {en} } @article{VandenHoveJakobSchrautetal.2011, author = {Van den Hove, Daniel and Jakob, Sissi Brigitte and Schraut, Karla-Gerlinde and Kenis, Gunter and Schmitt, Angelika Gertrud and Kneitz, Susanne and Scholz, Claus-J{\"u}rgen and Wiescholleck, Valentina and Ortega, Gabriela and Prickaerts, Jos and Steinbusch, Harry and Lesch, Klaus-Peter}, title = {Differential Effects of Prenatal Stress in 5-Htt Deficient Mice: Towards Molecular Mechanisms of Gene x Environment Interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75795}, year = {2011}, abstract = {Prenatal stress (PS) has been shown to influence the development of the fetal brain and to increase the risk for the development of psychiatric disorders in later life. Furthermore, the variation of human serotonin transporter (5-HTT, SLC6A4) gene was suggested to exert a modulating effect on the association between early life stress and the risk for depression. In the present study, we used a 5-Htt6PS paradigm to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition, anxiety- and depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt +/2) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression profiling was performed using the Affymetrix GeneChipH Mouse Genome 430 2.0 Array. 5-Htt +/2 offspring showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt +/2 mice to PS was associated with increased depressive-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt +/2 genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotype6PS manner, indicating a gene6environment interaction at the molecular level. In conclusion, our data suggest that although the 5-Htt +/2 genotype shows clear adaptive capacity, 5-Htt +/2 mice -particularly females- at the same time appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression profiles suggest that distinct molecular mechanisms mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction.}, subject = {Medizin}, language = {en} } @article{VandenHoveJakobSchrautetal.2011, author = {Van den Hove, Daniel and Jakob, Sissi Brigitte and Schraut, Karla-Gerlinde and Kenis, Gunter and Schmitt, Angelika Gertrud and Kneitz, Susanne and Scholz, Claus-J{\"u}rgen and Wiescholleck, Valentina and Ortega, Gabriela and Prickaerts, Jos and Steinbusch, Harry and Lesch, Klaus-Peter}, title = {Differential Effects of Prenatal Stress in 5-Htt Deficient Mice: Towards Molecular Mechanisms of Gene x Environment Interactions}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0022715}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135111}, pages = {e22715}, year = {2011}, abstract = {Prenatal stress (PS) has been shown to influence the development of the fetal brain and to increase the risk for the development of psychiatric disorders in later life. Furthermore, the variation of human serotonin transporter (5-HTT, SLC6A4) gene was suggested to exert a modulating effect on the association between early life stress and the risk for depression. In the present study, we used a 5-HttxPS paradigm to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition, anxiety-and depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt +/-) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression profiling was performed using the Affymetrix GeneChip (R) Mouse Genome 430 2.0 Array. 5-Htt +/- offspring showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt +/- mice to PS was associated with increased depressive-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt +/- genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotypexPS manner, indicating a genexenvironment interaction at the molecular level. In conclusion, our data suggest that although the 5-Htt +/- genotype shows clear adaptive capacity, 5-Htt +/- mice -particularly females-at the same time appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression profiles suggest that distinct molecular mechanisms mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction.}, language = {en} } @article{HohoffGorjiKaiseretal.2013, author = {Hohoff, Christa and Gorji, Ali and Kaiser, Sylvia and Willscher, Edith and Korsching, Eberhard and Ambr{\´e}e, Oliver and Arolt, Volker and Lesch, Klaus-Peter and Sachser, Norbert and Deckert, J{\"u}rgen and Lewejohann, Lars}, title = {Effect of Acute Stressor and Serotonin Transporter Genotype on Amygdala First Wave Transcriptome in Mice}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0058880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131040}, pages = {e58880}, year = {2013}, abstract = {The most prominent brain region evaluating the significance of external stimuli immediately after their onset is the amygdala. Stimuli evaluated as being stressful actuate a number of physiological processes as an immediate stress response. Variation in the serotonin transporter gene has been associated with increased anxiety- and depression-like behavior, altered stress reactivity and adaptation, and pathophysiology of stress-related disorders. In this study the instant reactions to an acute stressor were measured in a serotonin transporter knockout mouse model. Mice lacking the serotonin transporter were verified to be more anxious than their wild-type conspecifics. Genome-wide gene expression changes in the amygdala were measured after the mice were subjected to control condition or to an acute stressor of one minute exposure to water. The dissection of amygdalae and stabilization of RNA was conducted within nine minutes after the onset of the stressor. This extremely short protocol allowed for analysis of first wave primary response genes, typically induced within five to ten minutes of stimulation, and was performed using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays. RNA profiling revealed a largely new set of differentially expressed primary response genes between the conditions acute stress and control that differed distinctly between wild-type and knockout mice. Consequently, functional categorization and pathway analysis indicated genes related to neuroplasticity and adaptation in wild-types whereas knockouts were characterized by impaired plasticity and genes more related to chronic stress and pathophysiology. Our study therefore disclosed different coping styles dependent on serotonin transporter genotype even directly after the onset of stress and accentuates the role of the serotonergic system in processing stressors and threat in the amygdala. Moreover, several of the first wave primary response genes that we found might provide promising targets for future therapeutic interventions of stress-related disorders also in humans.}, language = {en} } @article{SpinelliMuellerFriedeletal.2013, author = {Spinelli, Simona and M{\"u}ller, Tanja and Friedel, Miriam and Sigrist, Hannes and Lesch, Klaus-Peter and Henkelman, Mark and Rudin, Markus and Seifritz, Erich and Pryce, Christopher R.}, title = {Effects of repeated adolescent stress and serotonin transporter gene partial knockout in mice on behaviors and brain structures relevant to major depression}, series = {Frontiers in Behavioral Neuroscience}, volume = {7}, journal = {Frontiers in Behavioral Neuroscience}, doi = {10.3389/fnbeh.2013.00215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122240}, pages = {215}, year = {2013}, abstract = {In humans, exposure to stress during development is associated with structural and functional alterations of the prefrontal cortex (PFC), amygdala (AMY), and hippocampus (HC) and their circuits of connectivity, and with an increased risk for developing major depressive disorder particularly in carriers of the short (s) variant of the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR). Although changes in these regions are found in carriers of the s allele and/or in depressed patients, evidence for a specific genotype x developmental stress effect on brain structure and function is limited. Here, we investigated the effect of repeated stress exposure during adolescence in mice with partial knockout of the 5-HIT gene (HET) vs. wildtype (WT) on early-adulthood behavioral measures and brain structure [using magnetic resonance imaging (MRI)] relevant to human major depression. Behaviorally, adolescent stress (AS) increased anxiety and decreased activity and did so to a similar degree in HET and WT. In a probabilistic reversal learning task, HET-AS mice achieved fewer reversals than did HET-No-AS mice. 5-HIT genotype and AS were without effect on corticosterone stress response. In terms of structural brain differences, AS reduced the volume of two long-range white matter tracts, the optic tract (OT) and the cerebral peduncle (CP), in WT mice specifically. In a region-of-interest analysis, AS was associated with increased HC volume and HET genotype with a decreased frontal lobe volume. In conclusion, we found that 5-HIT and AS genotype exerted long-term effects on behavior and development of brain regions relevant to human depression.}, language = {en} } @article{FreyPoppPostetal.2014, author = {Frey, Anna and Popp, Sandy and Post, Antonia and Langer, Simon and Lehmann, Marc and Hofmann, Ulrich and Siren, Anna-Leena and Hommers, Leif and Schmitt, Angelika and Strekalova, Tatyana and Ertl, Georg and Lesch, Klaus-Peter and Frantz, Stefan}, title = {Experimental heart failure causes depression-like behavior together with differential regulation of inflammatory and structural genes in the brain}, series = {Frontiers in Behavioral Neuroscience}, volume = {8}, journal = {Frontiers in Behavioral Neuroscience}, issn = {1662-5153}, doi = {10.3389/fnbeh.2014.00376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118234}, pages = {376}, year = {2014}, abstract = {Background: Depression and anxiety are common and independent outcome predictors in patients with chronic heart failure (CHF). However, it is unclear whether CHF causes depression. Thus, we investigated whether mice develop anxiety- and depression-like behavior after induction of ischemic CHF by myocardial infarction (MI). Methods and Results: In order to assess depression-like behavior, anhedonia was investigated by repeatedly testing sucrose preference for 8 weeks after coronary artery ligation or sham operation. Mice with large MI and increased left ventricular dimensions on echocardiography (termed CHF mice) showed reduced preference for sucrose, indicating depression-like behavior. 6 weeks after MI, mice were tested for exploratory activity, anxiety-like behavior and cognitive function using the elevated plus maze (EPM), light-dark box (LDB), open field (OF), and object recognition (OR) tests. In the EPM and OF, CHF mice exhibited diminished exploratory behavior and motivation despite similar movement capability. In the OR, CHF mice had reduced preference for novelty and impaired short-term memory. On histology, CHF mice had unaltered overall cerebral morphology. However, analysis of gene expression by RNA-sequencing in prefrontal cortical, hippocampal, and left ventricular tissue revealed changes in genes related to inflammation and cofactors of neuronal signal transduction in CHF mice, with Nr4a1 being dysregulated both in prefrontal cortex and myocardium after MI. Conclusions: After induction of ischemic CHF, mice exhibited anhedonic behavior, decreased exploratory activity and interest in novelty, and cognitive impairment. Thus, ischemic CHF leads to distinct behavioral changes in mice analogous to symptoms observed in humans with CHF and comorbid depression.}, language = {en} } @article{FernandezCastilloCabanaDominguezKappeletal.2021, author = {Fern{\`a}ndez-Castillo, No{\`e}lia and Cabana-Dom{\´i}nguez, Judit and Kappel, Djenifer B. and Torrico, B{\`a}rbara and Weber, Heike and Lesch, Klaus-Peter and Lao, Oscar and Reif, Andreas and Cormand, Bru}, title = {Exploring the contribution to ADHD of genes involved in Mendelian disorders presenting with hyperactivity and/or inattention}, series = {Genes}, volume = {13}, journal = {Genes}, number = {1}, issn = {2073-4425}, doi = {10.3390/genes13010093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252346}, year = {2021}, abstract = {Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by hyperactivity, impulsivity, and/or inattention, which are symptoms also observed in many rare genetic disorders. We searched for genes involved in Mendelian disorders presenting with ADHD symptoms in the Online Mendelian Inheritance in Man (OMIM) database, to curate a list of new candidate risk genes for ADHD. We explored the enrichment of functions and pathways in this gene list, and tested whether rare or common variants in these genes are associated with ADHD or with its comorbidities. We identified 139 genes, causal for 137 rare disorders, mainly related to neurodevelopmental and brain function. Most of these Mendelian disorders also present with other psychiatric traits that are often comorbid with ADHD. Using whole exome sequencing (WES) data from 668 ADHD cases, we found rare variants associated with the dimension of the severity of inattention symptoms in three genes: KIF11, WAC, and CRBN. Then, we focused on common variants and identified six genes associated with ADHD (in 19,099 cases and 34,194 controls): MANBA, UQCC2, HIVEP2, FOPX1, KANSL1, and AUH. Furthermore, HIVEP2, FOXP1, and KANSL1 were nominally associated with autism spectrum disorder (ASD) (18,382 cases and 27,969 controls), as well as HIVEP2 with anxiety (7016 cases and 14,475 controls), and FOXP1 with aggression (18,988 individuals), which is in line with the symptomatology of the rare disorders they are responsible for. In conclusion, inspecting Mendelian disorders and the genes responsible for them constitutes a valuable approach for identifying new risk genes and the mechanisms of complex disorders.}, language = {en} } @article{KittelSchneiderKenisScheketal.2012, author = {Kittel-Schneider, Sarah and Kenis, Gunter and Schek, Julia and van den Hove, Daniel and Prickaerts, Jos and Lesch, Klaus-Peter and Steinbusch, Harry and Reif, Andreas}, title = {Expression of monoamine transporters, nitric oxide synthase 3, and neurotrophin genes in antidepressant-stimulated astrocytes}, series = {Frontiers in Psychiatry}, volume = {3}, journal = {Frontiers in Psychiatry}, doi = {10.3389/fpsyt.2012.00033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123627}, pages = {33}, year = {2012}, abstract = {Background: There is increasing evidence that glial cells play a role in the pathomechanisms of mood disorders and the mode of action of antidepressant drugs. Methods: To examine whether there is a direct effect on the expression of different genes encoding proteins that have been implicated in the pathophysiology of affective disorders, primary astrocyte cell cultures from rats were treated with two different antidepressant drugs, imipramine and escitalopram, and the RNA expression of brain-derived neurotrophic factor (Bdnf), serotonin transporter (5Htt), dopamine transporter (Dat), and endothelial nitric oxide synthase (Nos3) was examined. Results: Stimulation of astroglial cell culture with imipramine, a tricyclic antidepressant, led to a significant increase of the Bdnf RNA level whereas treatment with escitalopram did not. In contrast, 5Htt was not differentially expressed after antidepressant treatment. Finally, neither Dat nor Nos3 RNA expression was detected in cultured astrocytes. Conclusion: These data provide further evidence for a role of astroglial cells in the molecular mechanisms of action of antidepressants.}, language = {en} }