@article{KanalKeiberEcketal.2014, author = {Kanal, Florian and Keiber, Sabine and Eck, Reiner and Brixner, Tobias}, title = {100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy}, doi = {10.1364/OE.22.016965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112853}, year = {2014}, abstract = {Shot-to-shot broadband detection is common in ultrafast pump-probe spectroscopy. Taking advantage of the intensity correlation of subsequent laser pulses improves the signal-to-noise ratio. Finite data readout times of CCD chips in the employed spectrometer and the maximum available speed of mechanical pump-beam choppers typically limit this approach to lasers with repetition rates of a few kHz. For high-repetition (≥ 100 kHz) systems, one typically averages over a larger number of laser shots leading to inferior signal-to-noise ratios or longer measurement times. Here we demonstrate broadband shot-to-shot detection in transient absorption spectroscopy with a 100-kHz femtosecond laser system. This is made possible using a home-built high-speed chopper with external laser synchronization and a fast CCD line camera. Shot-to-shot detection can reduce the data acquisition time by two orders of magnitude compared to few-kHz lasers while keeping the same signal-to-noise ratio.}, language = {en} } @article{MalyBrixner2021, author = {Mal{\´y}, Pavel and Brixner, Tobias}, title = {Fluorescence-Detected Pump-Probe Spectroscopy}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {34}, doi = {10.1002/anie.202102901}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244811}, pages = {18867 -- 18875}, year = {2021}, abstract = {We introduce a new approach to transient spectroscopy, fluorescence-detected pump-probe (F-PP) spectroscopy, that overcomes several limitations of traditional PP. F-PP suppresses excited-state absorption, provides background-free detection, removes artifacts resulting from pump-pulse scattering, from non-resonant solvent response, or from coherent pulse overlap, and allows unique extraction of excited-state dynamics under certain conditions. Despite incoherent detection, time resolution of F-PP is given by the duration of the laser pulses, independent of the fluorescence lifetime. We describe the working principle of F-PP and provide its theoretical description. Then we illustrate specific features of F-PP by direct comparison with PP, theoretically and experimentally. For this purpose, we investigate, with both techniques, a molecular squaraine heterodimer, core-shell CdSe/ZnS quantum dots, and fluorescent protein mCherry. F-PP is broadly applicable to chemical systems in various environments and in different spectral regimes.}, language = {en} }