@article{MechauFrankBakircietal.2021, author = {Mechau, Jannik and Frank, Andreas and Bakirci, Ezgi and Gumbel, Simon and Jungst, Tomasz and Giesa, Reiner and Groll, J{\"u}rgen and Dalton, Paul D. and Schmidt, Hans-Werner}, title = {Hydrophilic (AB)\(_{n}\) Segmented Copolymers for Melt Extrusion-Based Additive Manufacturing}, series = {Macromolecular Chemistry and Physics}, volume = {222}, journal = {Macromolecular Chemistry and Physics}, number = {1}, doi = {10.1002/macp.202000265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224513}, year = {2021}, abstract = {Several manufacturing technologies beneficially involve processing from the melt, including extrusion-based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)\(_{n}\) segmented copolymers are tailored for melt-processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(ethylene glycol)-based segments and hydrophobic bisurea segments, which form physical crosslinks via hydrogen bonds. The degree of polymerization was adjusted to match the melt viscosity to the different melt-processing techniques. Using extrusion-based printing, a width of approximately 260 µm is printed into 3D constructs, with excellent interlayer bonding at fiber junctions, due to hydrogen bonding between the layers. For melt electrospinning, much thinner fibers in the range of about 1-15 µm are obtained and produced in a typical nonwoven morphology. With melt electrowriting, fibers are deposited in a controlled way to well-defined 3D constructs. In this case, multiple fiber layers fuse together enabling constructs with line width in the range of 70 to 160 µm. If exposed to water the printed constructs swell and form physically crosslinked hydrogels that slowly disintegrate, which is a feature for soluble inks within biofabrication strategies. In this context, cytotoxicity tests confirm the viability of cells and thus demonstrating biocompatibility of this class of copolymers.}, language = {en} } @article{BakirciFrankGumbeletal.2021, author = {Bakirci, Ezgi and Frank, Andreas and Gumbel, Simon and Otto, Paul F. and F{\"u}rsattel, Eva and Tessmer, Ingrid and Schmidt, Hans-Werner and Dalton, Paul D.}, title = {Melt Electrowriting of Amphiphilic Physically Crosslinked Segmented Copolymers}, series = {Macromolecular Chemistry and Physics}, volume = {222}, journal = {Macromolecular Chemistry and Physics}, number = {22}, doi = {10.1002/macp.202100259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257572}, year = {2021}, abstract = {Various (AB)\(_{n}\) and (ABAC)\(_{n}\) segmented copolymers with hydrophilic and hydrophobic segments are processed via melt electrowriting (MEW). Two different (AB)\(_{n}\) segmented copolymers composed of bisurea segments and hydrophobic poly(dimethyl siloxane) (PDMS) or hydrophilic poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) segments, while the amphiphilic (ABAC)\(_{n}\) segmented copolymers consist of bisurea segments in the combination of hydrophobic PDMS segments and hydrophilic PPO-PEG-PPO segments with different ratios, are explored. All copolymer compositions are processed using the same conditions, including nozzle temperature, applied voltage, and collector distance, while changes in applied pressure and collector speed altered the fiber diameter in the range of 7 and 60 µm. All copolymers showed excellent processability with MEW, well-controlled fiber stacking, and inter-layer bonding. Notably, the surfaces of all four copolymer fibers are very smooth when visualized using scanning electron microscopy. However, the fibers show different roughness demonstrated with atomic force microscopy. The non-cytotoxic copolymers increased L929 fibroblast attachment with increasing PDMS content while the different copolymer compositions result in a spectrum of physical properties.}, language = {en} } @article{KarakayaBiderFranketal.2022, author = {Karakaya, Emine and Bider, Faina and Frank, Andreas and Teßmar, J{\"o}rg and Sch{\"o}bel, Lisa and Forster, Leonard and Schr{\"u}fer, Stefan and Schmidt, Hans-Werner and Schubert, Dirk Wolfram and Blaeser, Andreas and Boccaccini, Aldo R. and Detsch, Rainer}, title = {Targeted printing of cells: evaluation of ADA-PEG bioinks for drop on demand approaches}, series = {Gels}, volume = {8}, journal = {Gels}, number = {4}, issn = {2310-2861}, doi = {10.3390/gels8040206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267317}, year = {2022}, abstract = {A novel approach, in the context of bioprinting, is the targeted printing of a defined number of cells at desired positions in predefined locations, which thereby opens up new perspectives for life science engineering. One major challenge in this application is to realize the targeted printing of cells onto a gel substrate with high cell survival rates in advanced bioinks. For this purpose, different alginate-dialdehyde—polyethylene glycol (ADA-PEG) inks with different PEG modifications and chain lengths (1-8 kDa) were characterized to evaluate their application as bioinks for drop on demand (DoD) printing. The biochemical properties of the inks, printing process, NIH/3T3 fibroblast cell distribution within a droplet and shear forces during printing were analyzed. Finally, different hydrogels were evaluated as a printing substrate. By analysing different PEG chain lengths with covalently crosslinked and non-crosslinked ADA-PEG inks, it was shown that the influence of Schiff's bases on the viscosity of the corresponding materials is very low. Furthermore, it was shown that longer polymer chains resulted in less stable hydrogels, leading to fast degradation rates. Several bioinks highly exhibit biocompatibility, while the calculated nozzle shear stress increased from approx. 1.3 and 2.3 kPa. Moreover, we determined the number of cells for printed droplets depending on the initial cell concentration, which is crucially needed for targeted cell printing approaches.}, language = {en} } @phdthesis{Frank2009, author = {Frank, Andreas}, title = {Untersuchungen zur Anwendbarkeit und Validit{\"a}t von In-vitro-Methoden bez{\"u}glich der Inhibition von Cytochrom-P450-Enzymen durch Arzneipflanzenextrakte}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36236}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Um Arzneimittelwechselwirkungen von Arzneistoffen sowie neuen Arzneistoffkandidaten zu vermeiden, werden zur Absch{\"a}tzung des Interaktionsrisikos so genannte In-vitro-Interaktionsstudien durchgef{\"u}hrt. Hierf{\"u}r werden vor allem Mikrotiterplatten-basierte Fluoreszenz- und LC/MS-Methoden verwendet. Das Ziel dieser Arbeit war die Untersuchung der Anwendbarkeit und Validit{\"a}t dieser In-vitro-Methoden bez{\"u}glich der Inhibition von CYP-Enzymen durch Arzneipflanzenextrakte. Die in dieser Arbeit erhaltenen Daten belegen, dass die verwendeten Fluoreszenz-Assays f{\"u}r Pflanzenextrakte keine validen Ergebnisse liefern und f{\"u}r die Bestimmung der inhibitorischen Aktivit{\"a}t von Pflanzenextrakten nur in wenigen F{\"a}llen geeignet sind. Bei einigen untersuchten Pflanzenextrakten wurden sehr starke inhibitorische Aktivit{\"a}ten gefunden, da durch Quenching des Fluoreszenzsignals falsch positive Ergebnisse vorget{\"a}uscht wurden. Ebenso war die Inhibition bei einigen Pflanzenextrakten aufgrund einer starken Eigenfluoreszenz sehr schwach oder konnte {\"u}berhaupt nicht bestimmt werden. Des Weiteren wurden als Referenzmethoden f{\"u}r die Bestimmung der Inhibition von CYP-Enzymen LC/MS-basierte Methoden mit Online-Festphasenextraktion verwendet, die speziell f{\"u}r Pflanzenextrakte entwickelt und validiert wurden. Die Ergebnisse der LC/MS-basierten CYP-Assays wurden durch die Pflanzenmatrix nicht beeinflusst, so dass diese Assays hervorragend als Referenzmethoden f{\"u}r die Bestimmung der inhibitorischen Aktivit{\"a}t von Pflanzenextrakten geeignet sind. Bei sehr hohen Extraktkonzentrationen zeigten einige Pflanzenextrakte sehr starke Abweichungen der mittels LC/MS und Fluorimetrie in Mikrotiterplatten erhaltenen inhibitorischen Aktivit{\"a}t. Die Verwendung von niedrigen Extraktkonzentrationen f{\"u}hrte zu einer besseren {\"U}bereinstimmung der erhaltenen Ergebnisse. D.h. vor allem bei hohen Extraktkonzentrationen sind starke Quenching- und Eigenfluoreszenz-Effekte zu erwarten. Dennoch sind auch bei niedrigen Extraktkonzentrationen diese Effekte nicht auszuschließen. In den meisten Ver{\"o}ffentlichungen wurden sehr hohe Testkonzentrationen f{\"u}r die Bestimmung der inhibitorischen Aktivit{\"a}t von Pflanzenextrakten verwendet, so dass mit hoher Wahrscheinlichkeit aufgrund von Quenching- und Eigenfluoreszenz-Effekten falsch positive bzw. negative Ergebnisse erhalten wurden. Untersuchungen zum Quenching haben gezeigt, dass die meisten Extrakte in den {\"u}blicherweise verwendeten Konzentrationen (ca. 10-1000 µg/ml) die Fluoreszenzintensit{\"a}t der Metabolite sehr stark reduzierten. Die Quenching-Effekte der Pflanzenextrakte beeinflussten das Fluoreszenzsignal aller enzymatisch gebildeten Metabolite (Cumarin-Derivate, Resorufin, Fluorescein), wobei die Quenching-Effekte bei Resorufin und Fluorescein in ihrer St{\"a}rke und H{\"a}ufigkeit geringer ausfielen. Bei CYP2B6, CYP2C9 und CYP2D6 wurden in Verbindung mit Fluoreszenzsubstraten, die eine Cumarinstruktur aufweisen, sehr oft falsch negative oder gar keine Ergebnisse erhalten, weil die Eigenfluoreszenz der Extrakte die Metabolitenfluoreszenz {\"u}berlagerte. Quenching-Effekte traten bei den untersuchten Pflanzenextrakten weitaus h{\"a}ufiger auf als eine Eigenfluoreszenz. Aufgrund dieser Tatsachen k{\"o}nnen die Mikrotiterplatten-basierten Fluoreszenz-Methoden nur eingesetzt werden, wenn vorher gezeigt wurde, dass die Pflanzenextrakte bei allen Testkonzentrationen sowie bei verschiedenen Metabolitenkonzentrationen weder Quenching- noch Eigenfluoreszenz-Effekte zeigen. Ebenso wurde in dieser Arbeit gezeigt, dass die bisher in Ver{\"o}ffentlichungen durchgef{\"u}hrten Kontrollinkubationen nur bedingt zur Kompensation von Quenching- und Eigenfluoreszenz-Effekten geeignet sind. Das Auftreten und Ausmaß der Quenching- und Eigenfluoreszenz-Effekte sind abh{\"a}ngig vom Inhibitor (Pflanzenextrakt), der Inhibitorkonzentration, dem Metaboliten und dessen Anregungs- und Emissionswellenl{\"a}nge sowie der Metabolitenkonzentration, die durch die enzymatische Umsetzung des Substrats und der inhibitorischen Aktivit{\"a}t des Inhibitors bestimmt wird. W{\"a}hrend der Inhibitor, die zu testenden Inhibitorkonzentrationen, der Metabolit sowie dessen Anregungs- und Emissionswellenl{\"a}nge eine feste Gr{\"o}ße darstellen, ist die Metabolitenkonzentration je nach inhibitorischer Aktivit{\"a}t des Inhibitors sehr unterschiedlich. D. h. letztendlich h{\"a}ngt das genaue Ausmaß der Eigenfluoreszenz- und Quenching-Effekte von der inhibitorischen Aktivit{\"a}t der Pflanzenextrakte ab. Es konnte gezeigt werden, dass je geringer die Metabolitenkonzentration ist, desto st{\"a}rker wird das Fluoreszenzsignal reduziert (Quenching) bzw. erh{\"o}ht (Eigenfluoreszenz). Eine sinnvolle Kontrollinkubation zur Kompensation von Quenching- und Eigenfluoreszenz-Effekten kann also gar nicht durchgef{\"u}hrt werden. Bei In-vitro-Untersuchungen zur Bestimmung der inhibitorischen Aktivit{\"a}t ist die Metabolitenkonzentration nicht bekannt und somit der Einfluss der Effekte nicht bestimmbar.}, subject = {In vitro}, language = {de} }