@article{ShemerMekiesBenJehudaetal.2021, author = {Shemer, Yuval and Mekies, Lucy N. and Ben Jehuda, Ronen and Baskin, Polina and Shulman, Rita and Eisen, Binyamin and Regev, Danielle and Arbustini, Eloisa and Gerull, Brenda and Gherghiceanu, Mihaela and Gottlieb, Eyal and Arad, Michael and Binah, Ofer}, title = {Investigating LMNA-related dilated cardiomyopathy using human induced Pluripotent Stem Cell-derived cardiomyocytes}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {15}, issn = {1422-0067}, doi = {10.3390/ijms22157874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285673}, year = {2021}, abstract = {LMNA-related dilated cardiomyopathy is an inherited heart disease caused by mutations in the LMNA gene encoding for lamin A/C. The disease is characterized by left ventricular enlargement and impaired systolic function associated with conduction defects and ventricular arrhythmias. We hypothesized that LMNA-mutated patients' induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) display electrophysiological abnormalities, thus constituting a suitable tool for deciphering the arrhythmogenic mechanisms of the disease, and possibly for developing novel therapeutic modalities. iPSC-CMs were generated from two related patients (father and son) carrying the same E342K mutation in the LMNA gene. Compared to control iPSC-CMs, LMNA-mutated iPSC-CMs exhibited the following electrophysiological abnormalities: (1) decreased spontaneous action potential beat rate and decreased pacemaker current (I\(_f\)) density; (2) prolonged action potential duration and increased L-type Ca\(^{2+}\) current (I\(_{Ca,L}\)) density; (3) delayed afterdepolarizations (DADs), arrhythmias and increased beat rate variability; (4) DADs, arrhythmias and cessation of spontaneous firing in response to β-adrenergic stimulation and rapid pacing. Additionally, compared to healthy control, LMNA-mutated iPSC-CMs displayed nuclear morphological irregularities and gene expression alterations. Notably, KB-R7943, a selective inhibitor of the reverse-mode of the Na\(^+\)/Ca\(^{2+}\) exchanger, blocked the DADs in LMNA-mutated iPSC-CMs. Our findings demonstrate cellular electrophysiological mechanisms underlying the arrhythmias in LMNA-related dilated cardiomyopathy.}, language = {en} }