@article{BrumbergKuestersAlMomanietal.2017, author = {Brumberg, Joachim and K{\"u}sters, Sebastian and Al-Momani, Ehab and Marotta, Giorgio and Cosgrove, Kelly P. and van Dyck, Christopher H. and Herrmann, Ken and Homola, Gy{\"o}rgy A. and Pezzoli, Gianni and Buck, Andreas K. and Volkmann, Jens and Samnick, Samuel and Isaias, Ioannis U.}, title = {Cholinergic activity and levodopa-induced dyskinesia: a multitracer molecular imaging study}, series = {Annals of Clinical and Translational Neurology}, volume = {4}, journal = {Annals of Clinical and Translational Neurology}, number = {9}, doi = {10.1002/acn3.438}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170406}, pages = {632-639}, year = {2017}, abstract = {Objective: To investigate the association between levodopa-induced dyskinesias and striatal cholinergic activity in patients with Parkinson's disease. Methods: This study included 13 Parkinson's disease patients with peak-of-dose levodopa-induced dyskinesias, 12 nondyskinetic patients, and 12 healthy controls. Participants underwent 5-[\(^{123}\)I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine single-photon emission computed tomography, a marker of nicotinic acetylcholine receptors, [\(^{123}\)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography, to measure dopamine reuptake transporter density and 2-[\(^{18}\)F]fluoro-2-deoxyglucose positron emission tomography to assess regional cerebral metabolic activity. Striatal binding potentials, uptake values at basal ganglia structures, and correlations with clinical variables were analyzed. Results: Density of nicotinic acetylcholine receptors in the caudate nucleus of dyskinetic subjects was similar to that of healthy controls and significantly higher to that of nondyskinetic patients, in particular, contralaterally to the clinically most affected side. Interpretation: Our findings support the hypothesis that the expression of dyskinesia may be related to cholinergic neuronal excitability in a dopaminergic-depleted striatum. Cholinergic signaling would play a role in maintaining striatal dopaminergic responsiveness, possibly defining disease phenotype and progression.}, language = {en} } @article{WangIpKlausKarikarietal.2017, author = {Wang Ip, Chi and Klaus, Laura-Christin and Karikari, Akua A. and Visanji, Naomi P. and Brotchie, Jonathan M. and Lang, Anthony E. and Volkmann, Jens and Koprich, James B.}, title = {AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease}, series = {Acta Neuropathologica Communications}, volume = {5}, journal = {Acta Neuropathologica Communications}, number = {11}, doi = {10.1186/s40478-017-0416-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159429}, year = {2017}, abstract = {α-Synuclein is a protein implicated in the etiopathogenesis of Parkinson's disease (PD). AAV1/2-driven overexpression of human mutated A53T-α-synuclein in rat and monkey substantia nigra (SN) induces degeneration of nigral dopaminergic neurons and decreases striatal dopamine and tyrosine hydroxylase (TH). Given certain advantages of the mouse, especially it being amendable to genetic manipulation, translating the AAV1/2-A53T α-synuclein model to mice would be of significant value. AAV1/2-A53T α-synuclein or AAV1/2 empty vector (EV) at a concentration of 5.16 x 10\(^{12}\) gp/ml were unilaterally injected into the right SN of male adult C57BL/6 mice. Post-mortem examinations included immunohistochemistry to analyze nigral α-synuclein, Ser129 phosphorylated α-synuclein and TH expression, striatal dopamine transporter (DAT) levels by autoradiography and dopamine levels by high performance liquid chromatography. At 10 weeks, in AAV1/2-A53T α-synuclein mice there was a 33\% reduction in TH+ dopaminergic nigral neurons (P < 0.001), 29\% deficit in striatal DAT binding (P < 0.05), 38\% and 33\% reductions in dopamine (P < 0.001) and DOPAC (P < 0.01) levels and a 60\% increase in dopamine turnover (homovanilic acid/dopamine ratio; P < 0.001). Immunofluorescence showed that the AAV1/2-A53T α-synuclein injected mice had widespread nigral and striatal expression of vector-delivered A53T-α-synuclein. Concurrent staining with human PD SN samples using gold standard histological methodology for Lewy pathology detection by proteinase K digestion and application of specific antibody raised against human Lewy body α-synuclein (LB509) and Ser129 phosphorylated α-synuclein (81A) revealed insoluble α-synuclein aggregates in AAV1/2-A53T α-synuclein mice resembling Lewy-like neurites and bodies. In the cylinder test, we observed significant paw use asymmetry in the AAV1/2-A53T α-synuclein group when compared to EV controls at 5 and 9 weeks post injection (P < 0.001; P < 0.05). These data show that unilateral injection of AAV1/2-A53T α-synuclein into the mouse SN leads to persistent motor deficits, neurodegeneration of the nigrostriatal dopaminergic system and development of Lewy-like pathology, thereby reflecting clinical and pathological hallmarks of human PD.}, language = {en} } @article{PoetterNergerReeseSteigerwaldetal.2017, author = {P{\"o}tter-Nerger, Monika and Reese, Rene and Steigerwald, Frank and Heiden, Jan Arne and Herzog, Jan and Moll, Christian K. E. and Hamel, Wolfgang and Ramirez-Pasos, Uri and Falk, Daniela and Mehdorn, Maximilian and Gerloff, Christian and Deuschl, G{\"u}nther and Volkmann, Jens}, title = {Movement-Related Activity of Human Subthalamic Neurons during a Reach-to-Grasp Task}, series = {Frontiers in Human Neuroscience}, volume = {11}, journal = {Frontiers in Human Neuroscience}, number = {436}, doi = {10.3389/fnhum.2017.00436}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170361}, year = {2017}, abstract = {The aim of the study was to record movement-related single unit activity (SUA) in the human subthalamic nucleus (STN) during a standardized motor task of the upper limb. We performed microrecordings from the motor region of the human STN and registered kinematic data in 12 patients with Parkinson's disease (PD) undergoing deep brain stimulation surgery (seven women, mean age 62.0 ± 4.7 years) while they intraoperatively performed visually cued reach-to-grasp movements using a grip device. SUA was analyzed offline in relation to different aspects of the movement (attention, start of the movement, movement velocity, button press) in terms of firing frequency, firing pattern, and oscillation. During the reach-to-grasp movement, 75/114 isolated subthalamic neurons exhibited movement-related activity changes. The largest proportion of single units showed modulation of firing frequency during several phases of the reach and grasp (polymodal neurons, 45/114), particularly an increase of firing rate during the reaching phase of the movement, which often correlated with movement velocity. The firing pattern (bursting, irregular, or tonic) remained unchanged during movement compared to rest. Oscillatory single unit firing activity (predominantly in the theta and beta frequency) decreased with movement onset, irrespective of oscillation frequency. This study shows for the first time specific, task-related, SUA changes during the reach-to-grasp movement in humans.}, language = {en} }