@phdthesis{Klein2014, author = {Klein, Teresa}, title = {Lokalisationsmikroskopie f{\"u}r die Visualisierung zellul{\"a}rer Strukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99260}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die Einf{\"u}hrung der Fluoreszenzmikroskopie erm{\"o}glicht es, Strukturen in Zellen spezifisch und mit hohem Kontrast zu markieren und zu untersuchen. Da die Lichtmikroskopie jedoch in ihrer Aufl{\"o}sung begrenzt ist, bleiben Strukturinformationen auf molekularer Ebene verborgen. Diese als Beugungsgrenze bekannte Limitierung, kann mit modernen Verfahren umgangen werden. Die Lokalisationsmikroskopie nutzt hierf{\"u}r photoschaltbare Fluorophore, deren Fluoreszenz r{\"a}umlich und zeitlich separiert wird, um so einzelne Fluorophore mit Nanometer-Genauigkeit lokalisieren zu k{\"o}nnen. Aus tausenden Einzelmolek{\"u}l-Lokalisationen wird ein k{\"u}nstliches, hochaufgel{\"o}stes Bild rekonstruiert. Die hochaufl{\"o}sende Mikroskopie ist grade f{\"u}r die Lebendzell-Beobachtung ein wertvolles Werkzeug, um subzellul{\"a}re Strukturen und Proteindynamiken jenseits der Beugungsgrenze unter physiologischen Bedingungen untersuchen zu k{\"o}nnen. Als Marker k{\"o}nnen sowohl photoaktivierbare fluoreszierende Proteine als auch photoschaltbare organische Fluorophore eingesetzt werden. W{\"a}hrend die Markierung mit fluoreszierenden Proteinen einfach zu verwirklichen ist, haben organische Farbstoffe hingegen den Vorteil, dass sie auf Grund der h{\"o}heren Photonenausbeute eine pr{\"a}zisere Lokalisation erlauben. In lebenden Zellen wird die Markierung von Strukturen mit synthetischen Fluorophoren {\"u}ber sogenannte chemische Tags erm{\"o}glicht. Diese sind olypeptidsequenzen, die genetisch an das Zielprotein fusioniert werden und anschließend mit Farbstoff-gekoppelten Substraten gef{\"a}rbt werden. An der Modellstruktur des Histonproteins H2B werden in dieser Arbeit Farbstoffe in Kombination mit chemischen Tags identifiziert, die erfolgreich f{\"u}r die Hochaufl{\"o}sung mit direct stochastic optical reconstruction microscopy (dSTORM) in lebenden Zellen eingesetzt werden k{\"o}nnen. F{\"u}r besonders geeignet erweisen sich die Farbstoffe Tetramethylrhodamin, 505 und Atto 655, womit der gesamte spektrale Bereich vertreten ist. Allerdings k{\"o}nnen unspezifische Bindung und Farbstoffaggregation ein Problem bei der effizienten Markierung in lebenden Zellen darstellen. Es wird gezeigt, dass die Beschichtung der Glasoberfl{\"a}che mit Glycin die unspezifische Adsorption der Fluorophore erfolgreich minimieren kann. Weiterhin wird der Einfluss des Anregungslichtes auf die lebende Zelle diskutiert. Es werden Wege beschrieben, um die Photosch{\"a}digung m{\"o}glichst gering zu halten, beispielsweise durch die Wahl eines Farbstoffs im rotem Anregungsbereich. Die M{\"o}glichkeit lebende Zellen mit photoschaltbaren organischen Fluorophoren spezifisch markieren zu k{\"o}nnen, stellt einen großen Gewinn f{\"u}r die Lokalisationsmikroskopie dar, bei der urspr{\"u}nglich farbstoffgekoppelte Antik{\"o}rper zum Einsatz kamen. Diese Markierungsmethode wird in dieser Arbeit eingesetzt, um das Aggregationsverhalten von Alzheimer verursachenden � -Amyloid Peptiden im Rahmen einer Kooperation zu untersuchen. Es werden anhand von HeLa Zellen verschiedene beugungsbegrenzte Morphologien der Aggregate aufgekl{\"a}rt. Dabei wird gezeigt, dass intrazellul{\"a}r vorhandene Peptide gr{\"o}ßere Aggregate formen als die im extrazellul{\"a}ren Bereich. In einer zweiten Kollaboration wird mit Hilfe des photoaktivierbaren Proteins mEos2 und photoactivated localization microscopy (PALM) die strukturelle Organisation zweier Flotillinproteine in der Membran von Bakterien untersucht. Diese Proteine bilden zwei Cluster mit unterschiedlichen Durchmessern, die mit Nanometer-Genauigkeit bestimmt werden konnten. Es wurde außerdem festgestellt, dass beide Proteine in unterschiedlichen Anzahlen im Bakterium vorliegen.}, subject = {Hochaufl{\"o}sendes Verfahren}, language = {de} } @article{AndronicShirakashiPickeletal.2015, author = {Andronic, Joseph and Shirakashi, Ryo and Pickel, Simone U. and Westerling, Katherine M. and Klein, Teresa and Holm, Thorge and Sauer, Markus and Sukhorukov, Vladimir L.}, title = {Hypotonic Activation of the Myo-Inositol Transporter SLC5A3 in HEK293 Cells Probed by Cell Volumetry, Confocal and Super-Resolution Microscopy}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0119990}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126408}, year = {2015}, abstract = {Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol Pino [m/s] and expression/localization of SLC5A3. Pino values were determined by cell volumetry over a wide tonicity range (100-275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200-275 mOsm), Pino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼3 nm/s at 100-125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in Pino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM). dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200-2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80-800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.}, language = {en} } @article{SchneiderKleinMielichSuessetal.2015, author = {Schneider, Johannes and Klein, Teresa and Mielich-S{\"u}ss, Benjamin and Koch, Gudrun and Franke, Christian and Kuipers, Oskar P. and Kov{\´a}cs, {\´A}kos T. and Sauer, Markus and Lopez, Daniel}, title = {Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {4}, doi = {10.1371/journal.pgen.1005140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125577}, pages = {e1005140}, year = {2015}, abstract = {Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium.}, language = {en} } @article{WaeldchenLehmannKleinetal.2015, author = {W{\"a}ldchen, Sina and Lehmann, Julian and Klein, Teresa and van de Linde, Sebastian and Sauer, Markus}, title = {Light-induced cell damage in live-cell super-resolution microscopy}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {15348}, doi = {10.1038/srep15348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145207}, year = {2015}, abstract = {Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of similar to 1 kW cm\(^{-2}\) at 640 nm for several minutes, the maximum dose at 405 nm is only similar to 50 J cm\(^{-2}\), emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities.}, language = {en} } @article{GrimmKleinKopeketal.2016, author = {Grimm, Jonathan B. and Klein, Teresa and Kopek, Benjamin G. and Shtengel, Gleb and Hess, Harald F. and Sauer, Markus and Lavis, Luke D.}, title = {Synthesis of a far-red photoactivatable silicon-containing rhodamine for super-resolution microscopy}, series = {Angewandte Chemie International Edition}, volume = {55}, journal = {Angewandte Chemie International Edition}, number = {5}, doi = {10.1002/anie.201509649}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191069}, pages = {1723-1727}, year = {2016}, abstract = {The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules.}, language = {en} }