@phdthesis{Kilian2015, author = {Kilian, Patrick}, title = {Teilchenbeschleunigung an kollisionsfreien Schockfronten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119023}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Das Magnetfeld der Sonne ist kein einfaches statisches Dipolfeld, sondern weist wesentlich kompliziertere Strukturen auf. Wenn Rekonnexion die Topologie eines Feldlinienb{\"u}ndels ver{\"a}ndert, wird viel Energie frei, die zuvor im Magnetfeld gespeichert war. Das abgetrennte B{\"u}ndel wird mit dem damit verbundenen Plasma mit großer Geschwindigkeit durch die Korona von der Sonne weg bewegen. Dieser Vorgang wird als koronaler Massenauswurf bezeichnet. Da diese Bewegung mit Geschwindigkeiten deutlich {\"u}ber der Alfv\'en-Geschwindigkeit, der kritischen Geschwindigkeit im Sonnenwind, erfolgen kann, bildet sich eine Schockfront, die durch den Sonnenwind propagiert. Satelliten, die die Bedingungen im Sonnenwind beobachten, detektieren beim Auftreten solcher Schockfronten einen erh{\"o}hten Fluss von hochenergetischen Teilchen. Mit Radioinstrumenten empf{\"a}ngt man zeitgleich elektromagnetische Ph{\"a}nomene, die als Radiobursts bezeichnet werden, und ebenfalls f{\"u}r die Anwesenheit energiereicher Teilchen sprechen. Daher, und aufgrund von theoretischen {\"U}berlegungen liegt es nahe, anzunehmen, daß Teilchen an der Schockfront beschleunigt werden k{\"o}nnen. Die Untersuchung der Teilchenbeschleunigung an kollisionsfreien Schockfronten ist aber noch aus einem zweiten Grund interessant. Die Erde wird kontinuierlich von hochenergetischen Teilchen, die aus historischen Gr{\"u}nden als kosmische Strahlung bezeichnet werden, erreicht. Die g{\"a}ngige Theorie f{\"u}r deren Herkunft besagt, daß zumindest der galaktische Anteil durch die Beschleunigung an Schockfronten, die durch Supernovae ausgel{\"o}st wurden, bis zu den beobachteten hohen Energien gelangt sind. Das Problem bei der Untersuchung der Herkunft der kosmischen Strahlung ist jedoch, daß die Schockfronten um Supernova{\"u}berreste aufgrund der großen Entfernung nicht direkt beobachtbar sind. Es liegt dementsprechend nahe, die Schockbeschleunigung an den wesentlich n{\"a}heren und besser zu beobachtenden Schocks im Sonnensystem zu studieren, um so Modelle und Simulationen entwickeln und testen zu k{\"o}nnen. Die vorliegende Arbeit besch{\"a}ftigt sich daher mit Simulationen von Schockfronten mit Parametern, die etwa denen von CME getriebenen Schocks entsprechen. Um die Entwicklung der Energieverteilung der Teilchen zu studieren, ist ein kinetischer Ansatz n{\"o}tig. Dementsprechend wurden die Simulationen mit einem Particle-in-Cell Code durchgef{\"u}hrt. Die Herausforderung ist dabei die große Spanne zwischen den mikrophysikalischen Zeit- und L{\"a}ngenskalen, die aus Gr{\"u}nden der Genauigkeit und numerischen Stabilit{\"a}t aufgel{\"o}st werden m{\"u}ssen und den wesentlich gr{\"o}ßeren Skalen, die die Schockfront umfasst und auf der Teilchenbeschleunigung stattfindet. Um die Stabilit{\"a}t und physikalische Aussagekraft der Simulationen sicherzustellen, werden die numerischen Bausteine mittels Testf{\"a}llen, deren Verhalten bekannt ist, gr{\"u}ndlich auf ihre Tauglichkeit und korrekte Implementierung gepr{\"u}ft. Bei den resultierenden Simulationen wird das Zutreffen von analytischen Vorhersagen (etwa die Einhaltung der Sprungbedingungen) {\"u}berpr{\"u}ft. Auch die Vorhersagen einfacherer Plasmamodelle, etwa f{\"u}r das elektrostatischen Potential an der Schockfront, das man auch aus einer Zwei-Fluid-Beschreibung erhalten kann, folgen automatisch aus der selbstkonsistenten, kinetischen Beschreibung. Zus{\"a}tzlich erh{\"a}lt man Aussagen {\"u}ber das Spektrum und die Bahnen der beschleunigten Teilchen.}, subject = {Stoßfreies Plasma}, language = {de} } @article{VainioValtonenHeberetal.2013, author = {Vainio, Rami and Valtonen, Eino and Heber, Bernd and Malandraki, Olga E. and Papaioannou, Athanasios and Klein, Karl-Ludwig and Afanasiev, Alexander and Agueda, Neus and Aurass, Henry and Battarbee, Markus and Braune, Stephan and Dr{\"o}ge, Wolfgang and Ganse, Urs and Hamadache, Clarisse and Heynderickx, Daniel and Huttunen-Heikinmaa, Kalle and Kiener, J{\"u}rgen and Kilian, Patrick and Kopp, Andreas and Kouloumvakos, Athanasios and Maisala, Sami and Mishev, Alexander and Miteva, Rosita and Nindos, Alexander and Oittinen, Tero and Raukunen, Osku and Riihonen, Esa and Rodriguez-Gasen, Rosa and Saloniemi, Oskari and Sanahuja, Blai and Scherer, Renate and Spanier, Felix and Tatischeff, Vincent and Tziotziou, Kostas and Usoskin, Ilya G. and Vilmer, Nicole}, title = {The first SEPServer event catalogue similar to ~68-MeV solar proton events observed at 1 AU in 1996-2010}, series = {Journal of Space Weather and Space Climate}, volume = {3}, journal = {Journal of Space Weather and Space Climate}, number = {A12}, issn = {2115-7251}, doi = {10.1051/swsc/2013030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122847}, year = {2013}, abstract = {SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE) of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP) events and related electromagnetic (EM) emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (similar to 68-MeV) protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA) for protons and time-shifting analysis (TSA) for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU < s less than or similar to 3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the associated X-ray flare. The average path length derived from VDA is about 1.9 times the nominal length of the spiral magnetic field line. This implies that the path length of first-arriving MeV to deka-MeV protons is affected by interplanetary scattering. TSA of near-relativistic electrons results in a release time that shows significant scatter with respect to the EM emissions but with a trend of being delayed more with increasing distance between the flare and the nominal footpoint of the Earth-connected field line.}, language = {en} }