@article{KiermaschFischerGilEscrigetal.2021, author = {Kiermasch, David and Fischer, Mathias and Gil-Escrig, Lid{\´o}n and Baumann, Andreas and Bolink, Henk J. and Dyakonov, Vladimir and Tvingstedt, Kristofer}, title = {Reduced Recombination Losses in Evaporated Perovskite Solar Cells by Postfabrication Treatment}, series = {Solar RRL}, volume = {5}, journal = {Solar RRL}, number = {11}, doi = {10.1002/solr.202100400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258003}, year = {2021}, abstract = {The photovoltaic perovskite research community has now developed a large set of tools and techniques to improve the power conversion efficiency (PCE). One such arcane trick is to allow the finished devices to dwell in time, and the PCE often improves. Herein, a mild postannealing procedure is implemented on coevaporated perovskite solar cells confirming a substantial PCE improvement, mainly attributed to an increased open-circuit voltage (V\(_{OC}\)). From a V\(_{OC}\) of around 1.11 V directly after preparation, the voltage improves to more than 1.18 V by temporal and thermal annealing. To clarify the origin of this annealing effect, an in-depth device experimental and simulation characterization is conducted. A simultaneous reduction of the dark saturation current, the ideality factor (n\(_{id}\)), and the leakage current is revealed, signifying a substantial impact of the postannealing procedure on recombination losses. To investigate the carrier dynamics in more detail, a set of transient optoelectrical methods is first evaluated, ascertaining that the bulk carrier lifetime is increased with device annealing. Second, a drift-diffusion simulation is used, confirming that the beneficial effect of the annealing has its origin in effective bulk trap passivation that accordingly leads to a reduction of Shockley-Read-Hall recombination rates.}, language = {en} } @article{KiermaschRiederTvingstedtetal.2016, author = {Kiermasch, David and Rieder, Philipp and Tvingstedt, Kristofer and Baumann, Andreas and Dyakonov, Vladimir}, title = {Improved charge carrier lifetime in planar perovskite solar cells by bromine doping}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep39333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147976}, pages = {39333}, year = {2016}, abstract = {The charge carrier lifetime is an important parameter in solar cells as it defines, together with the mobility, the diffusion length of the charge carriers, thus directly determining the optimal active layer thickness of a device. Herein, we report on charge carrier lifetime values in bromine doped planar methylammonium lead iodide (MAPbI\(_3\)) solar cells determined by transient photovoltage. The corresponding charge carrier density has been derived from charge carrier extraction. We found increased lifetime values in solar cells incorporating bromine compared to pure MAPbI\(_3\) by a factor of ~2.75 at an illumination intensity corresponding to 1 sun. In the bromine containing solar cells we additionally observe an anomalously high value of extracted charge, which we deduce to originate from mobile ions.}, language = {en} } @article{TvingstedtMalinkiewiczBaumannetal.2014, author = {Tvingstedt, Kristofer and Malinkiewicz, Olga and Baumann, Andreas and Deibel, Carsten and Snaith, Henry J. and Dyakonov, Vladimir and Bolink, Henk J.}, title = {Radiative efficiency of lead iodide based perovskite solar cells}, series = {Scientific Reports}, volume = {4}, journal = {Scientific Reports}, doi = {10.1038/srep06071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119360}, pages = {6071}, year = {2014}, abstract = {The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.}, language = {en} } @phdthesis{Baumann2011, author = {Baumann, Andreas}, title = {Charge Transport and Recombination Dynamics in Organic Bulk Heterojunction Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64915}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The charge transport in disordered organic bulk heterojunction (BHJ) solar cells is a crucial process affecting the power conversion efficiency (PCE) of the solar cell. With the need of synthesizing new materials for improving the power conversion efficiency of those cells it is important to study not only the photophysical but also the electrical properties of the new material classes. Thereby, the experimental techniques need to be applicable to operating solar cells. In this work, the conventional methods of transient photoconductivity (also known as "Time-of-Flight" (TOF)), as well as the transient charge extraction technique of "Charge Carrier Extraction by Linearly Increasing Voltage" (CELIV) are performed on different organic blend compositions. Especially with the latter it is feasible to study the dynamics, i.e. charge transport and charge carrier recombination, in bulk heterojunction (BHJ) solar cells with active layer thicknesses of 100-200 nm. For a well performing organic BHJ solar cells the morphology is the most crucial parameter finding a trade-off between an efficient photogeneration of charge carriers and the transport of the latter to the electrodes. Besides the morphology, the nature of energetic disorder of the active material blend and its influence on the dynamics are discussed extensively in this work. Thereby, the material system of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) serves mainly as a reference material system. New promising donor or acceptor materials and their potential for application in organic photovoltaics are studied in view of charge dynamics and compared with the reference system. With the need for commercialization of organic solar cells the question of the impact of environmental conditions on the PCE of the solar cells raises. In this work, organic BHJ solar cells exposed to synthetic air for finite duration are studied in view of the charge carrier transport and recombination dynamics. Finally, within the framework of this work the technique of photo-CELIV is improved. With the modified technique it is now feasible to study the mobility and lifetime of charge carriers in organic solar cells under operating conditions.}, subject = {Photovoltaik}, language = {en} }