@article{HutinLingTarbouriechetal.2022, author = {Hutin, Stephanie and Ling, Wai Li and Tarbouriech, Nicolas and Schoehn, Guy and Grimm, Clemens and Fischer, Utz and Burmeister, Wim P.}, title = {The vaccinia virus DNA helicase structure from combined single-particle cryo-electron microscopy and AlphaFold2 prediction}, series = {Viruses}, volume = {14}, journal = {Viruses}, number = {10}, issn = {1999-4915}, doi = {10.3390/v14102206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290523}, year = {2022}, abstract = {Poxviruses are large DNA viruses with a linear double-stranded DNA genome circularized at the extremities. The helicase-primase D5, composed of six identical 90 kDa subunits, is required for DNA replication. D5 consists of a primase fragment flexibly attached to the hexameric C-terminal polypeptide (res. 323-785) with confirmed nucleotide hydrolase and DNA-binding activity but an elusive helicase activity. We determined its structure by single-particle cryo-electron microscopy. It displays an AAA+ helicase core flanked by N- and C-terminal domains. Model building was greatly helped by the predicted structure of D5 using AlphaFold2. The 3.9 {\AA} structure of the N-terminal domain forms a well-defined tight ring while the resolution decreases towards the C-terminus, still allowing the fit of the predicted structure. The N-terminal domain is partially present in papillomavirus E1 and polyomavirus LTA helicases, as well as in a bacteriophage NrS-1 helicase domain, which is also closely related to the AAA+ helicase domain of D5. Using the Pfam domain database, a D5_N domain followed by DUF5906 and Pox_D5 domains could be assigned to the cryo-EM structure, providing the first 3D structures for D5_N and Pox_D5 domains. The same domain organization has been identified in a family of putative helicases from large DNA viruses, bacteriophages, and selfish DNA elements.}, language = {en} } @article{VendelovadeLimaLorenzattoetal.2016, author = {Vendelova, Emilia and de Lima, Jeferson Camargo and Lorenzatto, Karina Rodrigues and Monteiro, Karina Mariante and Mueller, Thomas and Veepaschit, Jyotishman and Grimm, Clemens and Brehm, Klaus and Hrčkov{\´a}, Gabriela and Lutz, Manfred B. and Ferreira, Henrique B. and Nono, Justin Komguep}, title = {Proteomic Analysis of Excretory-Secretory Products of Mesocestoides corti Metacestodes Reveals Potential Suppressors of Dendritic Cell Functions}, series = {PLoS Neglected Tropical Diseases}, volume = {10}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0005061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166742}, pages = {e0005061}, year = {2016}, abstract = {Accumulating evidences have assigned a central role to parasite-derived proteins in immunomodulation. Here, we report on the proteomic identification and characterization of immunomodulatory excretory-secretory (ES) products from the metacestode larva (tetrathyridium) of the tapeworm Mesocestoides corti (syn. M. vogae). We demonstrate that ES products but not larval homogenates inhibit the stimuli-driven release of the pro-inflammatory, Th1-inducing cytokine IL-12p70 by murine bone marrow-derived dendritic cells (BMDCs). Within the ES fraction, we biochemically narrowed down the immunosuppressive activity to glycoproteins since active components were lipid-free, but sensitive to heat- and carbohydrate-treatment. Finally, using bioassay-guided chromatographic analyses assisted by comparative proteomics of active and inactive fractions of the ES products, we defined a comprehensive list of candidate proteins released by M. corti tetrathyridia as potential suppressors of DC functions. Our study provides a comprehensive library of somatic and ES products and highlight some candidate parasite factors that might drive the subversion of DC functions to facilitate the persistence of M. corti tetrathyridia in their hosts.}, language = {en} } @article{HofrichterMojaradDolletal.2018, author = {Hofrichter, Michaela A. H. and Mojarad, Majid and Doll, Julia and Grimm, Clemens and Eslahi, Atiye and Hosseini, Neda Sadat and Rajati, Mohsen and M{\"u}ller, Tobias and Dittrich, Marcus and Maroofian, Reza and Haaf, Thomas and Vona, Barbara}, title = {The conserved p.Arg108 residue in S1PR2 (DFNB68) is fundamental for proper hearing: evidence from a consanguineous Iranian family}, series = {BMC Medical Genetics}, volume = {19}, journal = {BMC Medical Genetics}, number = {81}, doi = {10.1186/s12881-018-0598-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175755}, year = {2018}, abstract = {Background: Genetic heterogeneity and consanguineous marriages make recessive inherited hearing loss in Iran the second most common genetic disorder. Only two reported pathogenic variants (c.323G>C, p.Arg108Pro and c.419A>G, p.Tyr140Cys) in the S1PR2 gene have previously been linked to autosomal recessive hearing loss (DFNB68) in two Pakistani families. We describe a segregating novel homozygous c.323G>A, p.Arg108Gln pathogenic variant in S1PR2 that was identified in four affected individuals from a consanguineous five generation Iranian family. Methods: Whole exome sequencing and bioinformatics analysis of 116 hearing loss-associated genes was performed in an affected individual from a five generation Iranian family. Segregation analysis and 3D protein modeling of the p.Arg108 exchange was performed. Results: The two Pakistani families previously identified with S1PR2 pathogenic variants presented profound hearing loss that is also observed in the affected Iranian individuals described in the current study. Interestingly, we confirmed mixed hearing loss in one affected individual. 3D protein modeling suggests that the p.Arg108 position plays a key role in ligand receptor interaction, which is disturbed by the p.Arg108Gln change. Conclusion: In summary, we report the third overall mutation in S1PR2 and the first report outside the Pakistani population. Furthermore, we describe a novel variant that causes an amino acid exchange (p.Arg108Gln) in the same amino acid residue as one of the previously reported Pakistani families (p.Arg108Pro). This finding emphasizes the importance of the p.Arg108 amino acid in normal hearing and confirms and consolidates the role of S1PR2 in autosomal recessive hearing loss.}, language = {en} }