@article{CzakaiLeonhardtDixetal.2016, author = {Czakai, Kristin and Leonhardt, Ines and Dix, Andreas and Bonin, Michael and Linde, Joerg and Einsele, Hermann and Kurzai, Oliver and Loeffler, J{\"u}rgen}, title = {Kr{\"u}ppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep27990}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181185}, year = {2016}, abstract = {Invasive fungal infections are associated with high mortality rates and are mostly caused by the opportunistic fungi Aspergillus fumigatus and Candida albicans. Immune responses against these fungi are still not fully understood. Dendritic cells (DCs) are crucial players in initiating innate and adaptive immune responses against fungal infections. The immunomodulatory effects of fungi were compared to the bacterial stimulus LPS to determine key players in the immune response to fungal infections. A genome wide study of the gene regulation of human monocyte-derived dendritic cells (DCs) confronted with A. fumigatus, C. albicans or LPS was performed and Kr{\"u}ppel-like factor 4 (KLF4) was identified as the only transcription factor that was down-regulated in DCs by both fungi but induced by stimulation with LPS. Downstream analysis demonstrated the influence of KLF4 on the interleukine-6 expression in human DCs. Furthermore, KLF4 regulation was shown to be dependent on pattern recognition receptor ligation. Therefore KLF4 was identified as a controlling element in the IL-6 immune response with a unique expression pattern comparing fungal and LPS stimulation.}, language = {en} } @article{ZieglerWeissSchmittetal.2017, author = {Ziegler, Sabrina and Weiss, Esther and Schmitt, Anna-Lena and Schlegel, Jan and Burgert, Anne and Terpitz, Ulrich and Sauer, Markus and Moretta, Lorenzo and Sivori, Simona and Leonhardt, Ines and Kurzai, Oliver and Einsele, Hermann and Loeffler, Juergen}, title = {CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {6138}, doi = {10.1038/s41598-017-06238-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170637}, year = {2017}, abstract = {Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.}, language = {en} }