@phdthesis{Hausoel2022, author = {Hausoel, Andreas}, title = {Electronic magnetism in correlated systems: from quantum materials down to Earth's core}, doi = {10.25972/OPUS-25444}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254444}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the last decade continuous-time quantum Monte Carlo in the hybridization expansion (CTHYB) was one of the most successful Monte Carlo techniques to describe correlated quantum phenomena in conjunction with dynamical mean field theory (DMFT). The first part of the thesis consists of algorithmical developments regarding CTHYB and DMFT. I provide a complete derivation and an extensive discussion of the expansion formula. We generalized it to treat spin-orbit coupling, and invented the superstate sampling algorithm to make it efficient enough for describing systems with general interactions, crystal fields and spin-orbit coupling at low temperatures. But CTHYB is known to fail in the standard implementation for equal-time correlators, certain higher-order Green's functions and the atomic limit; we discovered that its estimator for the Greens function is also inconsistent for Anderson impurities with finite, discrete baths. I focus then on further improvements of CTHYB that we have conceived and worked on, in particular for f-orbitals and for taking physical symmetries into account in the calculation of the Monte Carlo observables. The second part of the thesis presents selected physical applications of these methods. I show DMFT calculations of highest accuracy for elemental iron and nickel and discover a new mechanism of magnetic ordering in nickel: the ordering of band structure-induced local moments. Then we analyze the stability of this phenomenon under pressure and temperatures, that characterize in the Earth's core. We find, that the mechanism survives these conditions and may give a significant contribution to the generation of the Earth's magnetic field. The next topic is the stability of double Dirac fermions against electronic correlations. We find, that the Coulomb interaction in the corresponding material Bi2 CuO4 are strong enough to destroy the double Dirac cone, and substantial uniform pressure is necessary to restore them. In the last chapter I derive the properties of Higgs and Goldstone bosons from Ginzburg-Landau theory, and identify these excitations in a model of an excitonic magnet.}, subject = {Monte-Carlo-Simulation}, language = {en} } @phdthesis{Lang2010, author = {Lang, Thomas C.}, title = {Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53506}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases as correlations increase with decreasing N and determine whether the quantum spin liquid found in the SU(2) Hubbard model at intermediate coupling is a specific feature, or also exists in the unconstrained t-J model and higher symmetries.}, subject = {Monte-Carlo-Simulation}, language = {en} } @phdthesis{Bruenger2007, author = {Br{\"u}nger, Christian}, title = {Numerical Studies of Quantum Spin Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26439}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Der erste Teil der Arbeit widmet sich der Untersuchung des Bilayer-Heisenberg-Modells und des zweidimensionalen Kondo-Necklace-Modells. Beide Modelle weisen einen Quantenphasen{\"u}bergang zwischen einer geordneten und einer ungeordneten Phase auf. In dieser Arbeit richtet sich das Interesse insbesondere auf die Kopplung der kritischen Fluktuationen an ein in das System eingebundenes Loch. Mittels eines selbstkonsistenten Born'schen N{\"a}herungsverfahrens wird gezeigt, dass das Loch mit den Magnonen derart wechselwirkt, dass dessen Quasiteilchengewicht am quantenkritischen Punkt verschwindet. Um diesen Aspekt weiter zu untersuchen, wird das Verhalten des Quasiteilchengewichts im Bereich der kritischen Kopplung auch mit Quanten-Monte-Carlo-Methoden analysiert. Desweiteren werden die dynamischen Eigenschaften des Loches im magnetischen Hintergrund untersucht. Im zweiten Teil dieser Arbeit gilt das Interesse der Untersuchung des Spiral-Staircase-Heisenberg-Modells. Dieses besteht aus zwei, zu einer Spinleiter ferromagnetisch gekopplten Spin-1/2-Ketten, wobei die antiferromagnetische Kopplung innerhalb der zweiten Kette durch Windung der Leiter variiert werden kann. Dieses Model eignet sich, den {\"U}bergang zwischen einer Spin-1/2-Kette ohne Spinl{\"u}cke und einer Spin-1-Kette mit Spinl{\"u}cke zu studieren. Besondere Beachtung ist dem {\"O}ffnen der Spinl{\"u}cke in Abh{\"a}ngigkeit der ferromagnetischen Kopplung zwischen den Leiterbeinen geboten. Es stellt sich heraus, dass das System, abh{\"a}ngig von der Leiterwindung, wesentliche Unterschiede im Skalierungsverhalten der Spinl{\"u}cke aufweist. Desweiteren wird mittels der String-Order-Parameter gezeigt, dass das Spiral-Staircase-Heisenberg-Modell trotz des unterschiedlichen Skalierungsverhaltens der Spinl{\"u}cke und unabh{\"a}ngig von der Wahl der Parameter sich stets in der Haldane-Phase befindet. Die Analyse der Modelle bedient sich haupts{\"a}chlich Quanten-Monte-Carlo-Methoden, aber auch exakter Diagonalisierungstechniken, sowie auf Molekularfeldn{\"a}herungen gest{\"u}tzten Rechnungen.}, subject = {Spinsystem}, language = {en} }