@article{WolfAkrapMargetal.2013, author = {Wolf, Annette and Akrap, Nina and Marg, Berenice and Galliardt, Helena and Heiligentag, Martyna and Humpert, Fabian and Sauer, Markus and Kaltschmidt, Barbara and Kaltschmidt, Christian and Seidel, Thorsten}, title = {Elements of Transcriptional Machinery Are Compatible among Plants and Mammals}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0053737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131203}, pages = {e53737}, year = {2013}, abstract = {In the present work, the objective has been to analyse the compatibility of plant and human transcriptional machinery. The experiments revealed that nuclear import and export are conserved among plants and mammals. Further it has been shown that transactivation of a human promoter occurs by human transcription factor NF-\(\kappa\) B in plant cells, demonstrating that the transcriptional machinery is highly conserved in both kingdoms. Functionality was also seen for regulatory elements of NF-\(\kappa\) B such as its inhibitor I\(\kappa\)B isoform \(\alpha\) that negatively regulated the transactivation activity of the p50/RelA heterodimer by interaction with NF-\(\kappa\)B in plant cells. Nuclear export of RelA could be demonstrated by FRAP-measurements so that RelA shows nucleo-cytoplasmic shuttling as reported for RelA in mammalian cells. The data reveals the high level of compatibility of human transcriptional elements with the plant transcriptional machinery. Thus, Arabidopsis thaliana mesophyll protoplasts might provide a new heterologous expression system for the investigation of the human NF-\(\kappa\)B signaling pathways. The system successfully enabled the controlled manipulation of NF-\(\kappa\)B activity. We suggest the plant protoplast system as a tool for reconstitution and analyses of mammalian pathways and for direct observation of responses to e. g. pharmaceuticals. The major advantage of the system is the absence of interference with endogenous factors that affect and crosstalk with the pathway.}, language = {en} } @article{MaudetSourisceDraginetal.2013, author = {Maudet, Claire and Sourisce, Ad{\`e}le and Dragin, Lo{\"i}c and Lahouassa, Hichem and Rain, Jean-Christopher and Bouaziz, Serge and Ramirez, Bertha C{\´e}cilia and Margottin-Goguet, Florence}, title = {HIV-1 Vpr Induces the Degradation of ZIP and sZIP, Adaptors of the NuRD Chromatin Remodeling Complex, by Hijacking DCAF1/VprBP}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {10}, issn = {1932-6203}, doi = {10.1371/journal.pone.0077320}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128316}, pages = {e77320}, year = {2013}, abstract = {The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered.}, language = {en} } @article{TilstamGijbelsHabbeddineetal.2014, author = {Tilstam, Pathricia V. and Gijbels, Marion J. and Habbeddine, Mohamed and Cudejko, Celine and Asare, Yaw and Theelen, Wendy and Zhou, Baixue and D{\"o}ring, Yvonne and Drechsler, Maik and Pawig, Lukas and Simsekyilmaz, Sakine and Koenen, Rory R. and de Winther, Menno P. J. and Lawrence, Toby and Bernhagen, J{\"u}rgen and Zernecke, Alma and Weber, Christian and Noels, Heidi}, title = {Bone Marrow-Specific Knock-In of a Non-Activatable Ikkα Kinase Mutant Influences Haematopoiesis but Not Atherosclerosis in Apoe-Deficient Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {2}, doi = {10.1371/journal.pone.0087452}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117450}, pages = {e87452}, year = {2014}, abstract = {Background: The Ikkα kinase, a subunit of the NF-kappa B-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikk alpha mutant knock-in on haematopoiesis and atherosclerosis in mice. Methods and Results: Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (Ikkα(AA/AA) Apoe(-/-)) or with Ikkα(+/+) Apoe(-/-) BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in Ikkα(AA/AA) Apoe(-/-) BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of Ikkα(AA/AA) Apoe(-/-) vs Ikkα(+/+) Apoe(-/-) BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from Ikkα(AA/AA) Apoe(-/-) vs Ikkα(+/+) Apoe(-/-) mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Conclusion: Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of Ikkα AA mutant BM did not affect atherosclerosis in Apoe(-/-) mice. This suggests that the diverse functions of Ikkα in haematopoietic cells may counterbalance each other or may not be strong enough to influence atherogenesis, and reveals that targeting haematopoietic Ikkα kinase activity alone does not represent a therapeutic approach.}, language = {en} } @article{GroenewegvanRoyenFenzetal.2014, author = {Groeneweg, Femke L. and van Royen, Martin E. and Fenz, Susanne and Keizer, Veer I. P. and Geverts, Bart and Prins, Jurrien and de Kloet, E. Ron and Houtsmuller, Adriaan B. and Schmidt, Thomas S. and Schaaf, Marcel J. M.}, title = {Quantitation of Glucocorticoid Receptor DNA-Binding Dynamics by Single-Molecule Microscopy and FRAP}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, doi = {10.1371/journal.pone.0090532}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117085}, pages = {e90532}, year = {2014}, abstract = {Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (similar to 0.7 s) and the other half for longer time periods (similar to 2.3 s). A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors) show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (<= 1 ms) interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.}, language = {en} } @article{GewiesGorkaBergmannetal.2014, author = {Gewies, Andreas and Gorka, Oliver and Bergmann, Hanna and Pechloff, Konstanze and Petermann, Franziska and Jeltsch, Katharina M. and Rudelius, Martina and Kriegsmann, Mark and Weichert, Wilko and Horsch, Marion and Beckers, Johannes and Wurst, Wolfgang and Heikenwalder, Mathias and Korn, Thomas and Heissmeyer, Vigo and Ruland, Juergen}, title = {Uncoupling Malt1 Threshold Function from Paracaspase Activity Results in Destructive Autoimmune Inflammation}, series = {Cell Reports}, volume = {9}, journal = {Cell Reports}, number = {4}, doi = {10.1016/j.celrep.2014.10.044}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114627}, pages = {1292-1305}, year = {2014}, abstract = {The paracaspase Malt1 is a central regulator of antigen receptor signaling that is frequently mutated in human lymphoma. As a scaffold, it assembles protein complexes for NF-kappa B activation, and its proteolytic domain cleaves negative NF-kappa B regulators for signal enforcement. Still, the physiological functions of Malt1-protease are unknown. We demonstrate that targeted Malt1-paracaspase inactivation induces a lethal inflammatory syndrome with lymphocyte-dependent neurodegeneration in vivo. Paracaspase activity is essential for regulatory T cell (Treg) and innate-like B cell development, but it is largely dispensable for overcoming Malt1-dependent thresholds for lymphocyte activation. In addition to NF-kappa B inhibitors, Malt1 cleaves an entire set of mRNA stability regulators, including Roquin-1, Roquin-2, and Regnase-1, and paracaspase inactivation results in excessive interferon gamma (IFN gamma) production by effector lymphocytes that drive pathology. Together, our results reveal distinct threshold and modulatory functions of Malt1 that differentially control lymphocyte differentiation and activation pathways and demonstrate that selective paracaspase blockage skews systemic immunity toward destructive autoinflammation.}, language = {en} }