@article{ThornChaoGeorgievetal.2020, author = {Thorn, Simon and Chao, Anne and Georgiev, Konstadin B. and M{\"u}ller, J{\"o}rg and B{\"a}ssler, Claus and Campbell, John L. and Jorge, Castro and Chen, Yan-Han and Choi, Chang-Yong and Cobb, Tyler P. and Donato, Daniel C. and Durska, Ewa and Macdonald, Ellen and Feldhaar, Heike and Fontaine, Jospeh B. and Fornwalt, Paula J. and Hern{\´a}ndez Hern{\´a}ndez, Raquel Mar{\´i}a and Hutto, Richard L. and Koivula, Matti and Lee, Eun-Jae and Lindenmayer, David and Mikusinski, Grzegorz and Obrist, Martin K. and Perl{\´i}k, Michal and Rost, Josep and Waldron, Kaysandra and Wermelinger, Beat and Weiß, Ingmar and Zmihorski, Michal and Leverkus, Alexandro B.}, title = {Estimating retention benchmarks for salvage logging to protect biodiversity}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-18612-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230512}, year = {2020}, abstract = {Forests are increasingly affected by natural disturbances. Subsequent salvage logging, a widespread management practice conducted predominantly to recover economic capital, produces further disturbance and impacts biodiversity worldwide. Hence, naturally disturbed forests are among the most threatened habitats in the world, with consequences for their associated biodiversity. However, there are no evidence-based benchmarks for the proportion of area of naturally disturbed forests to be excluded from salvage logging to conserve biodiversity. We apply a mixed rarefaction/extrapolation approach to a global multi-taxa dataset from disturbed forests, including birds, plants, insects and fungi, to close this gap. We find that 757\% (mean +/- SD) of a naturally disturbed area of a forest needs to be left unlogged to maintain 90\% richness of its unique species, whereas retaining 50\% of a naturally disturbed forest unlogged maintains 73 +/- 12\% of its unique species richness. These values do not change with the time elapsed since disturbance but vary considerably among taxonomic groups. Salvage logging has become a common practice to gain economic returns from naturally disturbed forests, but it could have considerable negative effects on biodiversity. Here the authors use a recently developed statistical method to estimate that ca. 75\% of the naturally disturbed forest should be left unlogged to maintain 90\% of the species unique to the area.}, language = {en} } @article{MuellerUlyshenSeiboldetal.2020, author = {M{\"u}ller, J{\"o}rg and Ulyshen, Mike and Seibold, Sebastian and Cadotte, Marc and Chao, Anne and B{\"a}ssler, Claus and Vogel, Sebastian and Hagge, Jonas and Weiß, Ingmar and Baldrian, Petr and Tl{\´a}skal, Vojtěch and Thorn, Simon}, title = {Primary determinants of communities in deadwood vary among taxa but are regionally consistent}, series = {Oikos}, volume = {129}, journal = {Oikos}, number = {10}, doi = {10.1111/oik.07335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228201}, pages = {1579 -- 1588}, year = {2020}, abstract = {The evolutionary split between gymnosperms and angiosperms has far-reaching implications for the current communities colonizing trees. The inherent characteristics of dead wood include its role as a spatially scattered habitat of plant tissue, transient in time. Thus, local assemblages in deadwood forming a food web in a necrobiome should be affected not only by dispersal ability but also by host tree identity, the decay stage and local abiotic conditions. However, experiments simultaneously manipulating these potential community drivers in deadwood are lacking. To disentangle the importance of spatial distance and microclimate, as well as host identity and decay stage as drivers of local assemblages, we conducted two consecutive experiments, a 2-tree species and 6-tree species experiment with 80 and 72 tree logs, respectively, located in canopy openings and under closed canopies of a montane and a lowland forest. We sampled saproxylic beetles, spiders, fungi and bacterial assemblages from logs. Variation partitioning for community metrics based on a unified framework of Hill numbers showed consistent results for both studies: host identity was most important for sporocarp-detected fungal assemblages, decay stage and host tree for DNA-detected fungal assemblages, microclimate and decay stage for beetles and spiders and decay stage for bacteria. Spatial distance was of minor importance for most taxa but showed the strongest effects for arthropods. The contrasting patterns among the taxa highlight the need for multi-taxon analyses in identifying the importance of abiotic and biotic drivers of community composition. Moreover, the consistent finding of microclimate as the primary driver for saproxylic beetles compared to host identity shows, for the first time that existing evolutionary host adaptions can be outcompeted by local climate conditions in deadwood.}, language = {en} }