@article{KangManousakiFranchinietal.2015, author = {Kang, Ji Hyoun and Manousaki, Tereza and Franchini, Paolo and Kneitz, Susanne and Schartl, Manfred and Meyer, Axel}, title = {Transcriptomics of two evolutionary novelties: how to make a sperm-transfer organ out of an anal fin and a sexually selected "sword" out of a caudal fin}, series = {Ecology and Evolution}, volume = {5}, journal = {Ecology and Evolution}, number = {4}, doi = {10.1002/ece3.1390}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144139}, pages = {848-864}, year = {2015}, abstract = {Swords are exaggerated male ornaments of swordtail fishes that have been of great interest to evolutionary biologists ever since Darwin described them in the Descent of Man (1871). They are a novel sexually selected trait derived from modified ventral caudal fin rays and are only found in the genus Xiphophorus. Another phylogenetically more widespread and older male trait is the gonopodium, an intromittent organ found in all poeciliid fishes, that is derived from a modified anal fin. Despite many evolutionary and behavioral studies on both traits, little is known so far about the molecular mechanisms underlying their development. By investigating transcriptomic changes (utilizing a RNA-Seq approach) in response to testosterone treatment in the swordtail fish, Xiphophorus hellerii, we aimed to better understand the architecture of the gene regulatory networks underpinning the development of these two evolutionary novelties. Large numbers of genes with tissue-specific expression patterns were identified. Among the sword genes those involved in embryonic organ development, sexual character development and coloration were highly expressed, while in the gonopodium rather more morphogenesis-related genes were found. Interestingly, many genes and genetic pathways are shared between both developing novel traits derived from median fins: the sword and the gonopodium. Our analyses show that a larger set of gene networks was co-opted during the development and evolution of the older gonopodium than in the younger, and morphologically less complex trait, the sword. We provide a catalog of candidate genes for future efforts to dissect the development of those sexually selected exaggerated male traits in swordtails.}, language = {en} } @article{MeinertJessenHufnageletal.2024, author = {Meinert, Madlen and Jessen, Christina and Hufnagel, Anita and Kreß, Julia Katharina Charlotte and Burnworth, Mychal and D{\"a}ubler, Theo and Gallasch, Till and Da Xavier Silva, Thamara Nishida and Dos Santos, Anc{\´e}ly Ferreira and Ade, Carsten Patrick and Schmitz, Werner and Kneitz, Susanne and Friedmann Angeli, Jos{\´e} Pedro and Meierjohann, Svenja}, title = {Thiol starvation triggers melanoma state switching in an ATF4 and NRF2-dependent manner}, series = {Redox Biology}, volume = {70}, journal = {Redox Biology}, doi = {10.1016/j.redox.2023.103011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350328}, year = {2024}, abstract = {The cystine/glutamate antiporter xCT is an important source of cysteine for cancer cells. Once taken up, cystine is reduced to cysteine and serves as a building block for the synthesis of glutathione, which efficiently protects cells from oxidative damage and prevents ferroptosis. As melanomas are particularly exposed to several sources of oxidative stress, we investigated the biological role of cysteine and glutathione supply by xCT in melanoma. xCT activity was abolished by genetic depletion in the Tyr::CreER; Braf\(^{CA}\); Pten\(^{lox/+}\) melanoma model and by acute cystine withdrawal in melanoma cell lines. Both interventions profoundly impacted melanoma glutathione levels, but they were surprisingly well tolerated by murine melanomas in vivo and by most human melanoma cell lines in vitro. RNA sequencing of human melanoma cells revealed a strong adaptive upregulation of NRF2 and ATF4 pathways, which orchestrated the compensatory upregulation of genes involved in antioxidant defence and de novo cysteine biosynthesis. In addition, the joint activation of ATF4 and NRF2 triggered a phenotypic switch characterized by a reduction of differentiation genes and induction of pro-invasive features, which was also observed after erastin treatment or the inhibition of glutathione synthesis. NRF2 alone was capable of inducing the phenotypic switch in a transient manner. Together, our data show that cystine or glutathione levels regulate the phenotypic plasticity of melanoma cells by elevating ATF4 and NRF2.}, language = {en} } @article{JessenKressBaluapurietal.2020, author = {Jessen, Christina and Kreß, Julia K. C. and Baluapuri, Apoorva and Hufnagel, Anita and Schmitz, Werner and Kneitz, Susanne and Roth, Sabine and Marquardt, Andr{\´e} and Appenzeller, Silke and Ade, Casten P. and Glutsch, Valerie and Wobser, Marion and Friedmann-Angeli, Jos{\´e} Pedro and Mosteo, Laura and Goding, Colin R. and Schilling, Bastian and Geissinger, Eva and Wolf, Elmar and Meierjohann, Svenja}, title = {The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression}, series = {Oncogene}, volume = {39}, journal = {Oncogene}, issn = {0950-9232}, doi = {10.1038/s41388-020-01477-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235064}, pages = {6841-6855}, year = {2020}, abstract = {The transcription factor NRF2 is the major mediator of oxidative stress responses and is closely connected to therapy resistance in tumors harboring activating mutations in the NRF2 pathway. In melanoma, such mutations are rare, and it is unclear to what extent melanomas rely on NRF2. Here we show that NRF2 suppresses the activity of the melanocyte lineage marker MITF in melanoma, thereby reducing the expression of pigmentation markers. Intriguingly, we furthermore identified NRF2 as key regulator of immune-modulating genes, linking oxidative stress with the induction of cyclooxygenase 2 (COX2) in an ATF4-dependent manner. COX2 is critical for the secretion of prostaglandin E2 and was strongly induced by H\(_2\)O\(_2\) or TNFα only in presence of NRF2. Induction of MITF and depletion of COX2 and PGE2 were also observed in NRF2-deleted melanoma cells in vivo. Furthermore, genes corresponding to the innate immune response such as RSAD2 and IFIH1 were strongly elevated in absence of NRF2 and coincided with immune evasion parameters in human melanoma datasets. Even in vitro, NRF2 activation or prostaglandin E2 supplementation blunted the induction of the innate immune response in melanoma cells. Transcriptome analyses from lung adenocarcinomas indicate that the observed link between NRF2 and the innate immune response is not restricted to melanoma.}, language = {en} } @article{MortonVargaHornbachetal.2011, author = {Morton, Charles O. and Varga, John J. and Hornbach, Anke and Mezger, Markus and Sennefelder, Helga and Kneitz, Susanne and Kurzai, Oliver and Krappmann, Sven and Einsele, Hermann and Nierman, William C. and Rogers, Thomas R. and Loeffler, Juergen}, title = {The Temporal Dynamics of Differential Gene Expression in Aspergillus fumigatus Interacting with Human Immature Dendritic Cells In Vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68958}, year = {2011}, abstract = {No abstract avDendritic cells (DC) are the most important antigen presenting cells and play a pivotal role in host immunity to infectious agents by acting as a bridge between the innate and adaptive immune systems. Monocyte-derived immature DCs (iDC) were infected with viable resting conidia of Aspergillus fumigatus (Af293) for 12 hours at an MOI of 5; cells were sampled every three hours. RNA was extracted from both organisms at each time point and hybridised to microarrays. iDC cell death increased at 6 h in the presence of A. fumigatus which coincided with fungal germ tube emergence; .80\% of conidia were associated with iDC. Over the time course A. fumigatus differentially regulated 210 genes, FunCat analysis indicated significant up-regulation of genes involved in fermentation, drug transport, pathogenesis and response to oxidative stress. Genes related to cytotoxicity were differentially regulated but the gliotoxin biosynthesis genes were down regulated over the time course, while Aspf1 was up-regulated at 9 h and 12 h. There was an up-regulation of genes in the subtelomeric regions of the genome as the interaction progressed. The genes up-regulated by iDC in the presence of A. fumigatus indicated that they were producing a pro-inflammatory response which was consistent with previous transcriptome studies of iDC interacting with A. fumigatus germ tubes. This study shows that A. fumigatus adapts to phagocytosis by iDCs by utilising genes that allow it to survive the interaction rather than just up-regulation of specific virulence genes.}, subject = {Dendritische Zelle}, language = {en} } @article{SchubertJoniauGonteroetal.2012, author = {Schubert, Maria and Joniau, Steven and Gontero, Paolo and Kneitz, Susanne and Scholz, Claus-J{\"u}rgen and Kneitz, Burkhard and Briganti, Alberto and Karnes, R. Jeffery and Tombal, Bertrand and Walz, Jochen and Hsu, Chao-Yu and Marchioro, Giansilvio and Bader, Pia and Bangma, Chris and Frohneberg, Detlef and Graefen, Markus and Schr{\"o}der, Fritz and van Cangh, Paul and van Poppel, Hein and Spahn, Martin}, title = {The Role of Adjuvant Hormonal Treatment after Surgery for Localized High-Risk Prostate Cancer: Results of a Matched Multiinstitutional Analysis}, series = {Advances in Urology}, volume = {2012}, journal = {Advances in Urology}, doi = {10.1155/2012/612707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137712}, year = {2012}, abstract = {Introduction. To assess the role of adjuvant androgen deprivation therapy (ADT) in high-risk prostate cancer patients (PCa) after surgery. Materials and Methods. The analysis case matched 172 high-risk PCa patients with positive section margins or non-organ confined disease and negative lymph nodes to receive adjuvant ADT (group 1, n=86 ) or no adjuvant ADT (group 2, n=86). Results. Only 11.6\% of the patients died, 2.3\% PCa related. Estimated 5-10-year clinical progression-free survival was 96.9\% (94.3\%) for group 1 and 73.7\% (67.0\%) for group 2, respectively. Subgroup analysis identified men with T2/T3a tumors at low-risk and T3b margins positive disease at higher risk for progression. Conclusion. Patients with T2/T3a tumors are at low-risk for metastatic disease and cancer-related death and do not need adjuvant ADT. We identified men with T3b margin positive disease at highest risk for clinical progression. These patients benefit from immediate adjuvant ADT.}, language = {en} } @article{SchartlKneitzVolkoffetal.2019, author = {Schartl, Manfred and Kneitz, Susanne and Volkoff, Helene and Adolfi, Mateus and Schmidt, Cornelia and Fischer, Petra and Minx, Patrick and Tomlinson, Chad and Meyer, Axel and Warren, Wesley C.}, title = {The piranha genome provides molecular insight associated to its unique feeding behavior}, series = {Genome Biology and Evolution}, volume = {11}, journal = {Genome Biology and Evolution}, number = {8}, doi = {10.1093/gbe/evz139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202218}, pages = {2099-2106}, year = {2019}, abstract = {The piranha enjoys notoriety due to its infamous predatory behavior but much is still not understood about its evolutionary origins and the underlying molecular mechanisms for its unusual feeding biology. We sequenced and assembled the red-bellied piranha (Pygocentrus nattereri) genome to aid future phenotypic and genetic investigations. The assembled draft genome is similar to other related fishes in repeat composition and gene count. Our evaluation of genes under positive selection suggests candidates for adaptations of piranhas' feeding behavior in neural functions, behavior, and regulation of energy metabolism. In the fasted brain, we find genes differentially expressed that are involved in lipid metabolism and appetite regulation as well as genes that may control the aggression/boldness behavior of hungry piranhas. Our first analysis of the piranha genome offers new insight and resources for the study of piranha biology and for feeding motivation and starvation in other organisms.}, language = {en} } @article{PattschullWalzGruendletal.2019, author = {Pattschull, Grit and Walz, Susanne and Gr{\"u}ndl, Marco and Schwab, Melissa and R{\"u}hl, Eva and Baluapuri, Apoorva and Cindric-Vranesic, Anita and Kneitz, Susanne and Wolf, Elmar and Ade, Carsten P. and Rosenwald, Andreas and von Eyss, Bj{\"o}rn and Gaubatz, Stefan}, title = {The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes}, series = {Cell Reports}, volume = {27}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2019.05.071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202039}, pages = {3533-3546}, year = {2019}, abstract = {YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.}, language = {en} } @article{DuWuertzAdolfietal.2019, author = {Du, Kang and Wuertz, Sven and Adolfi, Mateus and Kneitz, Susanne and St{\"o}ck, Matthias and Oliveira, Marcos and N{\´o}brega, Rafael and Ormanns, Jenny and Kloas, Werner and Feron, Romain and Klopp, Christophe and Parrinello, Hugues and Journot, Laurent and He, Shunping and Postlethwait, John and Meyer, Axel and Guiguen, Yann and Schartl, Manfred}, title = {The genome of the arapaima (Arapaima gigas) provides insights into gigantism, fast growth and chromosomal sex determination system}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-41457-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201333}, pages = {5293}, year = {2019}, abstract = {We have sequenced the genome of the largest freshwater fish species of the world, the arapaima. Analysis of gene family dynamics and signatures of positive selection identified genes involved in the specific adaptations and unique features of this iconic species, in particular it's large size and fast growth. Genome sequences from both sexes combined with RAD-tag analyses from other males and females led to the isolation of male-specific scaffolds and supports an XY sex determination system in arapaima. Whole transcriptome sequencing showed that the product of the gland-like secretory organ on the head surface of males and females may not only provide nutritional fluid for sex-unbiased parental care, but that the organ itself has a more specific function in males, which engage more in parental care.}, language = {en} } @article{HeisigWeberEnglbergeretal.2012, author = {Heisig, Julia and Weber, David and Englberger, Eva and Winkler, Anja and Kneitz, Susanne and Sung, Wing-Kin and Wolf, Elmar and Eilers, Martin and Wei, Chia-Lin and Gessler, Manfred}, title = {Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75341}, year = {2012}, abstract = {HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an Ebox motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.}, subject = {Biologie}, language = {en} } @article{LangenhorstGogishviliRibechinietal.2012, author = {Langenhorst, Daniela and Gogishvili, Tea and Ribechini, Eliana and Kneitz, Susanne and McPherson, Kirsty and Lutz, Manfred B. and H{\"u}nig, Thomas}, title = {Sequential induction of effector function, tissue migration and cell death during polyclonal activation of mouse regulatory T-cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76009}, year = {2012}, abstract = {The ability of CD4+Foxp3+ regulatory T-cells (Treg) to produce interleukin (IL)-10 is important for the limitation of inflammation at environmental interfaces like colon or lung. Under steady state conditions, however, few Tregs produce IL-10 ex vivo. To investigate the origin and fate of IL-10 producing Tregs we used a superagonistic mouse anti-mouse CD28 mAb (CD28SA) for polyclonal in vivo stimulation of Tregs, which not only led to their numeric expansion but also to a dramatic increase in IL-10 production. IL-10 secreting Tregs strongly upregulated surface receptors associated with suppressive function as compared to non-producing Tregs. Furthermore, polyclonally expanding Tregs shifted their migration receptor pattern after activation from a CCR7+CCR52 lymph node-seeking to a CCR72CCR5+ inflammationseeking phenotype, explaining the preferential recruitment of IL-10 producers to sites of ongoing immune responses. Finally, we observed that IL-10 producing Tregs from CD28SA stimulated mice were more apoptosis-prone in vitro than their IL-10 negative counterparts. These findings support a model where prolonged activation of Tregs results in terminal differentiation towards an IL-10 producing effector phenotype associated with a limited lifespan, implicating built-in termination of immunosuppression.}, subject = {Medizin}, language = {en} } @article{TamihardjaZehnerHartrampfetal.2022, author = {Tamihardja, J{\"o}rg and Zehner, Leonie and Hartrampf, Philipp and Lisowski, Dominik and Kneitz, Susanne and Cirsi, Sinan and Razinskas, Gary and Flentje, Michael and Polat, B{\"u}lent}, title = {Salvage nodal radiotherapy as metastasis-directed therapy for oligorecurrent prostate cancer detected by positron emission tomography shows favorable outcome in long-term follow-up}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {15}, issn = {2072-6694}, doi = {10.3390/cancers14153766}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286064}, year = {2022}, abstract = {Simple Summary Patients, who suffer from oligorecurrent prostate cancer with limited nodal involvement, may be offered positron emission tomography (PET)-directed salvage nodal radiotherapy to delay disease progression. This current analysis aimed to access salvage radiotherapy for nodal oligorecurrent prostate cancer with simultaneous integrated boost to PET-involved lymph nodes as metastasis-directed therapy. A long-term oncological outcome was favorable after salvage nodal radiotherapy and severe toxicity rates were low. Androgen deprivation therapy plays a major role in recurrent prostate cancer management and demonstrates a positive influence on the rate of biochemical progression in patients receiving salvage nodal radiotherapy. The present long-term analysis may help clinicians identify patients who would benefit from salvage nodal radiotherapy and androgen deprivation therapy, as a multimodal treatment strategy for oligorecurrent prostate cancer. Abstract Background: The study aimed to access the long-term outcome of salvage nodal radiotherapy (SNRT) in oligorecurrent prostate cancer. Methods: A total of 95 consecutive patients received SNRT for pelvic and/or extrapelvic nodal recurrence after prostate-specific membrane antigen (PSMA) or choline PET from 2010 to 2021. SNRT was applied as external beam radiotherapy with simultaneous integrated boost up to a median total dose of 62.9 Gy (EQD2\(_{1.5Gy}\)) to the recurrent lymph node metastases. The outcome was analyzed by cumulative incidence functions with death as the competing risk. Fine-Gray regression analyses were performed to estimate the relative hazards of the outcome parameters. Genitourinary (GU)/gastrointestinal (GI) toxicity evaluation utilized Common Toxicity Criteria for Adverse Events (v5.0). The results are as follows: the median follow-up was 47.1 months. The five-year biochemical progression rate (95\% CI) was 50.1\% (35.7-62.9\%). Concomitant androgen deprivation therapy (ADT) was adminstered in 60.0\% of the patients. The five-year biochemical progression rate was 75.0\% (42.0-90.9\%) without ADT versus 35.3\% (19.6-51.4\%) with ADT (p = 0.003). The cumulative five-year late grade 3 GU toxicity rate was 2.1\%. No late grade 3 GI toxicity occured. Conclusions: Metastasis-directed therapy through SNRT for PET-staged oligorecurrent prostate cancer demonstrated a favorable long-term oncologic outcome. Omittance of ADT led to an increased biochemical progression.}, language = {en} } @article{WegertBausenweinKneitzetal.2011, author = {Wegert, Jenny and Bausenwein, Sabrina and Kneitz, Susanne and Roth, Sabine and Graf, Norbert and Geissinger, Eva and Gessler, Manfred}, title = {Retinoic acid pathway activity in Wilms tumors and characterization of biological responses in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69137}, year = {2011}, abstract = {Background: Wilms tumor (WT) is one of the most common malignancies in childhood. With current therapy protocols up to 90\% of patients can be cured, but there is still a need to improve therapy for patients with aggressive WT and to reduce treatment intensity where possible. Prior data suggested a deregulation of the retinoic acid (RA) signaling pathway in high-risk WT, but its mode of action remained unclear. Results: The association of retinoid signaling and clinical parameters could be validated in a large independent tumor set, but its relevance in primary nephrectomy tumors from very young children may be different. Reduced RA pathway activity and MYCN overexpression were found in high risk tumors as opposed to tumors with low/ intermediate risk, suggesting a beneficial impact of RA especially on advanced WT. To search for possible modes of action of retinoids as novel therapeutic options, primary tumor cell cultures were treated in vitro with all-trans-RA (ATRA), 9cis-RA, fenretinide and combinations of retinoids and a histone deacetylase (HDAC) inhibitor. Genes deregulated in high risk tumors showed opposite changes upon treatment suggesting a positive effect of retinoids. 6/7 primary cultures tested reduced proliferation, irrespective of prior RA signaling levels. The only variant culture was derived from mesoblastic nephroma, a distinct childhood kidney neoplasm. Retinoid/HDAC inhibitor combinations provided no synergistic effect. ATRA and 9cis-RA induced morphological changes suggestive of differentiation, while fenretinide induced apoptosis in several cultures tested. Microarray analysis of ATRA treated WT cells revealed differential expression of many genes involved in extracellular matrix formation and osteogenic, neuronal or muscle differentiation. The effects documented appear to be reversible upon drug withdrawal, however. Conclusions: Altered retinoic acid signaling has been validated especially in high risk Wilms tumors. In vitro testing of primary tumor cultures provided clear evidence of a potential utility of retinoids in Wilms tumor treatment based on the analysis of gene expression, proliferation, differentiation and apoptosis.}, subject = {Krebs}, language = {en} } @article{EndresKneitzOrthetal.2016, author = {Endres, Marcel and Kneitz, Susanne and Orth, Martin F. and Perera, Ruwan K. and Zernecke, Alma and Butt, Elke}, title = {Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1)}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {39}, doi = {10.18632/oncotarget.11720}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176920}, pages = {64244-64259}, year = {2016}, abstract = {The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines. By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines. In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown. Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression. The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.}, language = {en} } @article{AnelliOrdasKneitzetal.2018, author = {Anelli, Viviana and Ordas, Anita and Kneitz, Susanne and Sagredo, Leonel Munoz and Gourain, Victor and Schartl, Manfred and Meijer, Annemarie H. and Mione, Marina}, title = {Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression}, series = {Frontiers in Genetics}, volume = {9}, journal = {Frontiers in Genetics}, number = {675}, issn = {1664-8021}, doi = {10.3389/fgene.2018.00675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196963}, year = {2018}, abstract = {Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc\&acc=GSE37015.}, language = {en} } @article{FetivaLissGertzmannetal.2023, author = {Fetiva, Maria Camila and Liss, Franziska and Gertzmann, D{\"o}rthe and Thomas, Julius and Gantert, Benedikt and Vogl, Magdalena and Sira, Nataliia and Weinstock, Grit and Kneitz, Susanne and Ade, Carsten P. and Gaubatz, Stefan}, title = {Oncogenic YAP mediates changes in chromatin accessibility and activity that drive cell cycle gene expression and cell migration}, series = {Nucleic Acids Research}, volume = {51}, journal = {Nucleic Acids Research}, number = {9}, doi = {10.1093/nar/gkad107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350218}, pages = {4266-4283}, year = {2023}, abstract = {YAP, the key protein effector of the Hippo pathway, is a transcriptional co-activator that controls the expression of cell cycle genes, promotes cell growth and proliferation and regulates organ size. YAP modulates gene transcription by binding to distal enhancers, but the mechanisms of gene regulation by YAP-bound enhancers remain poorly understood. Here we show that constitutive active YAP5SA leads to widespread changes in chromatin accessibility in untransformed MCF10A cells. Newly accessible regions include YAP-bound enhancers that mediate activation of cycle genes regulated by the Myb-MuvB (MMB) complex. By CRISPR-interference we identify a role for YAP-bound enhancers in phosphorylation of Pol II at Ser5 at MMB-regulated promoters, extending previously published studies that suggested YAP primarily regulates the pause-release step and transcriptional elongation. YAP5SA also leads to less accessible 'closed' chromatin regions, which are not directly YAP-bound but which contain binding motifs for the p53 family of transcription factors. Diminished accessibility at these regions is, at least in part, a consequence of reduced expression and chromatin-binding of the p53 family member ΔNp63 resulting in downregulation of ΔNp63-target genes and promoting YAP-mediated cell migration. In summary, our studies uncover changes in chromatin accessibility and activity that contribute to the oncogenic activities of YAP.}, language = {en} } @article{KrebsSolimandoKalogirouetal.2020, author = {Krebs, Markus and Solimando, Antonio Giovanni and Kalogirou, Charis and Marquardt, Andr{\´e} and Frank, Torsten and Sokolakis, Ioannis and Hatzichristodoulou, Georgios and Kneitz, Susanne and Bargou, Ralf and K{\"u}bler, Hubert and Schilling, Bastian and Spahn, Martin and Kneitz, Burkhard}, title = {miR-221-3p Regulates VEGFR2 Expression in High-Risk Prostate Cancer and Represents an Escape Mechanism from Sunitinib In Vitro}, series = {Journal of Clinical Medicine}, volume = {9}, journal = {Journal of Clinical Medicine}, number = {3}, issn = {2077-0383}, doi = {10.3390/jcm9030670}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203168}, year = {2020}, abstract = {Downregulation of miR-221-3p expression in prostate cancer (PCa) predicted overall and cancer-specific survival of high-risk PCa patients. Apart from PCa, miR-221-3p expression levels predicted a response to tyrosine kinase inhibitors (TKI) in clear cell renal cell carcinoma (ccRCC) patients. Since this role of miR-221-3p was explained with a specific targeting of VEGFR2, we examined whether miR-221-3p regulated VEGFR2 in PCa. First, we confirmed VEGFR2/KDR as a target gene of miR-221-3p in PCa cells by applying Luciferase reporter assays and Western blotting experiments. Although VEGFR2 was mainly downregulated in the PCa cohort of the TCGA (The Cancer Genome Atlas) database, VEGFR2 was upregulated in our high-risk PCa cohort (n = 142) and predicted clinical progression. In vitro miR-221-3p acted as an escape mechanism from TKI in PC3 cells, as displayed by proliferation and apoptosis assays. Moreover, we confirmed that Sunitinib induced an interferon-related gene signature in PC3 cells by analyzing external microarray data and by demonstrating a significant upregulation of miR-221-3p/miR-222-3p after Sunitinib exposure. Our findings bear a clinical perspective for high-risk PCa patients with low miR-221-3p levels since this could predict a favorable TKI response. Apart from this therapeutic niche, we identified a partially oncogenic function of miR-221-3p as an escape mechanism from VEGFR2 inhibition.}, language = {en} } @article{KrebsBehrmannKalogirouetal.2019, author = {Krebs, Markus and Behrmann, Christoph and Kalogirou, Charis and Sokolakis, Ioannis and Kneitz, Susanne and Kruithof-de Julio, Marianna and Zoni, Eugenio and Rech, Anne and Schilling, Bastian and K{\"u}bler, Hubert and Spahn, Martin and Kneitz, Burkhard}, title = {miR-221 Augments TRAIL-mediated apoptosis in prostate cancer cells by inducing endogenous TRAIL expression and targeting the functional repressors SOCS3 and PIK3R1}, series = {BioMed Research International}, volume = {2019}, journal = {BioMed Research International}, doi = {10.1155/2019/6392748}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202480}, pages = {6392748}, year = {2019}, abstract = {miR-221 is regarded as an oncogene in many malignancies, and miR-221-mediated resistance towards TRAIL was one of the first oncogenic roles shown for this small noncoding RNA. In contrast, miR-221 is downregulated in prostate cancer (PCa), thereby implying a tumour suppressive function. By using proliferation and apoptosis assays, we show a novel feature of miR-221 in PCa cells: instead of inducing TRAIL resistance, miR-221 sensitized cells towards TRAIL-induced proliferation inhibition and apoptosis induction. Partially responsible for this effect was the interferon-mediated gene signature, which among other things contained an endogenous overexpression of the TRAIL encoding gene TNFSF10. This TRAIL-friendly environment was provoked by downregulation of the established miR-221 target gene SOCS3. Moreover, we introduced PIK3R1 as a target gene of miR-221 in PCa cells. Proliferation assays showed that siRNA-mediated downregulation of SOCS3 and PIK3R1 mimicked the effect of miR-221 on TRAIL sensitivity. Finally, Western blotting experiments confirmed lower amounts of phospho-Akt after siRNA-mediated downregulation of PIK3R1 in PC3 cells. Our results further support the tumour suppressing role of miR-221 in PCa, since it sensitises PCa cells towards TRAIL by regulating the expression of the oncogenes SOCS3 and PIK3R1. Given the TRAIL-inhibiting effect of miR-221 in various cancer entities, our results suggest that the influence of miR-221 on TRAIL-mediated apoptosis is highly context- and entity-dependent.}, language = {en} } @article{KneitzKalogirouSpahnetal.2013, author = {Kneitz, Burkhard and Kalogirou, Charis and Spahn, Martin and Krebs, Markus and Joniau, Steven and Lerut, Evelyne and Burger, Maximilian and Scholz, Claus-J{\"u}rgen and Kneitz, Susanne and Riedmiller, Hubertus}, title = {MiR-205 Is Progressively Down-Regulated in Lymph Node Metastasis but Fails as a Prognostic Biomarker in High-Risk Prostate Cancer}, series = {International Journal of Molecular Sciences}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms141121414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97321}, year = {2013}, abstract = {The treatment of high-risk prostate cancer (HRPCa) is a tremendous challenge for uro-oncologists. The identification of predictive moleculobiological markers allowing risk assessment of lymph node metastasis and systemic progression is essential in establishing effective treatment. In the current study, we investigate the prognostic potential of miR-205 in HRPCa study and validation cohorts, setting defined clinical endpoints for both. We demonstrate miR-205 to be significantly down-regulated in over 70\% of the HRPCa samples analysed and that reconstitution of miR-205 causes inhibition of proliferation and invasiveness in prostate cancer (PCa) cell lines. Additionally, miR-205 is increasingly down-regulated in lymph node metastases compared to the primary tumour indicating that miR-205 plays a role in migration of PCa cells from the original location into extraprostatic tissue. Nevertheless, down-regulation of miR-205 in primary PCa was not correlated to the synchronous presence of metastasis and failed to predict the outcome for HRPCa patients. Moreover, we found a tendency for miR-205 up-regulation to correlate with an adverse outcome of PCa patients suggesting a pivotal role of miR-205 in tumourigenesis. Overall, we showed that miR-205 is involved in the development and metastasis of PCa, but failed to work as a useful clinical biomarker in HRPCa. These findings might have implications for the use of miR-205 as a prognostic or therapeutic target in HRPCa.}, language = {en} } @article{JazbutyteFiedlerKneitzetal.2012, author = {Jazbutyte, Virginija and Fiedler, Jan and Kneitz, Susanne and Galuppo, Paolo and Just, Annette and Holzmann, Angelika and Bauersachs, Johann and Thum, Thomas}, title = {MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart}, series = {AGE}, volume = {35}, journal = {AGE}, number = {3}, doi = {10.1007/s11357-012-9407-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126745}, pages = {747-762}, year = {2012}, abstract = {MicroRNAs (miRs) are small non- coding RNA molecules controlling a plethora of biological processes such as development, cellular survival and senescence. We here determined miRs differentially regulated during cardiac postnatal development and aging. Cardiac function, morphology and miR expression profiles were determined in neonatal, 4 weeks, 6 months and 19 months old normotensive male healthy C57/Bl6N mice. MiR-22 was most prominently upregulated during cardiac aging. Cardiac expression of its bioinformatically predicted target mimecan (osteoglycin, OGN) was gradually decreased with advanced age. Luciferase reporter assays validated mimecan as a bona fide miR-22 target. Both, miR-22 and its target mimecan were co- expressed in cardiac fibroblasts and smooth muscle cells. Functionally, miR-22 overexpression induced cellular senescence and promoted migratory activity of cardiac fibroblasts. Small interference RNA-mediated silencing of mimecan in cardiac fibroblasts mimicked the miR-22-mediated effects. Rescue experiments revealed that the effects of miR-22 on cardiac fibroblasts were only partially mediated by mimecan. In conclusion, miR-22 upregulation in the aging heart contributed at least partly to accelerated cardiac fibroblast senescence and increased migratory activity. Our results suggest an involvement of miR-22 in age-associated cardiac changes, such as cardiac fibrosis.}, language = {en} } @article{SilvaVilchesPletinckxLohnertetal.2017, author = {Silva-Vilches, Cinthia and Pletinckx, Katrien and Lohnert, Miriam and Pavlovic, Vladimir and Ashour, Diyaaeldin and John, Vini and Vendelova, Emilia and Kneitz, Susanne and Zhou, Jie and Chen, Rena and Reinheckel, Thomas and Mueller, Thomas D. and Bodem, Jochen and Lutz, Manfred B.}, title = {Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0178114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158244}, pages = {e0178114}, year = {2017}, abstract = {Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3\(^{+}\) induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CT\(^{hi}\), CT\(^{lo}\)) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β). Only DCs matured under CT\(^{hi}\) conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CT\(^{lo}\)- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3\(^{+}\) iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CT\(^{lo}\)- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE) by inducing Foxp3\(^{+}\) Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae.}, language = {en} }