@unpublished{FerschMalyRueheetal.2023, author = {Fersch, Daniel and Mal{\´y}, Pavel and R{\"u}he, Jessica and Lisinetskii, Victor and Hensen, Matthias and W{\"u}rthner, Frank and Brixner, Tobias}, title = {Single-Molecule Ultrafast Fluorescence-Detected Pump-Probe Microscopy}, doi = {10.25972/OPUS-31348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313485}, year = {2023}, abstract = {We introduce fluorescence-detected pump-probe microscopy by combining a wavelength-tunable ultrafast laser with a confocal scanning fluorescence microscope, enabling access to the femtosecond time scale on the micrometer spatial scale. In addition, we obtain spectral information from Fourier transformation over excitation pulse-pair time delays. We demonstrate this new approach on a model system of a terrylene bisimide (TBI) dye embedded in a PMMA matrix and acquire the linear excitation spectrum as well as time-dependent pump-probe spectra simultaneously. We then push the technique towards single TBI molecules and analyze the statistical distribution of their excitation spectra. Furthermore, we demonstrate the ultrafast transient evolution of several individual molecules, highlighting their different behavior in contrast to the ensemble due to their individual local environment. By correlating the linear and nonlinear spectra, we assess the effect of the molecular environment on the excited-state energy.}, subject = {Fluoreszenz}, language = {en} } @article{MuellerLuettigMalyetal.2019, author = {Mueller, Stefan and L{\"u}ttig, Julian and Mal{\´y}, Pavel and Ji, Lei and Han, Jie and Moos, Michael and Marder, Todd B. and Bunz, Uwe H. F. and Dreuw, Andreas and Lambert, Christoph and Brixner, Tobias}, title = {Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-12602-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202529}, pages = {4735}, year = {2019}, abstract = {Coherent two-dimensional spectroscopy is a powerful tool for probing ultrafast quantum dynamics in complex systems. Several variants offer different types of information but typically require distinct beam geometries. Here we introduce population-based three-dimensional (3D) electronic spectroscopy and demonstrate the extraction of all fourth- and multiple sixth-order nonlinear signal contributions by employing 125-fold (1⨯5⨯5⨯5) phase cycling of a four-pulse sequence. Utilizing fluorescence detection and shot-to-shot pulse shaping in single-beam geometry, we obtain various 3D spectra of the dianion of TIPS-tetraazapentacene, a fluorophore with limited stability at ambient conditions. From this, we recover previously unknown characteristics of its electronic two-photon state. Rephasing and nonrephasing sixth-order contributions are measured without additional phasing that hampered previous attempts using noncollinear geometries. We systematically resolve all nonlinear signals from the same dataset that can be acquired in 8 min. The approach is generalizable to other incoherent observables such as external photoelectrons, photocurrents, or photoions.}, language = {en} } @unpublished{DietzschJayachandranMuelleretal.2023, author = {Dietzsch, Julia and Jayachandran, Ajay and Mueller, Stefan and H{\"o}bartner, Claudia and Brixner, Tobias}, title = {Excitonic coupling of RNA-templated merocyanine dimer studied by higher-order transient absorption spectroscopy}, series = {Chemical Communications}, journal = {Chemical Communications}, edition = {submitted version}, doi = {10.1039/D3CC02024J}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327772}, year = {2023}, abstract = {We report the synthesis and spectroscopic analysis of RNA containing the barbituric acid merocyanine rBAM2 as a nucleobase surrogate. Incorporation into RNA strands by solid-phase synthesis leads to fluorescence enhancement compared to the free chromophore. In addition, linear absorption studies show the formation of an excitonically coupled H-type dimer in the hybridized duplex. Ultrafast third- and fifth-order transient absorption spectroscopy of this non-fluorescent dimer suggests immediate (sub-200 fs) exciton transfer and annihilation due to the proximity of the rBAM2 units.}, language = {en} } @unpublished{LambertVoelkerKochetal.2015, author = {Lambert, Christoph and V{\"o}lker, Sebastian F. and Koch, Federico and Schmiedel, Alexander and Holzapfel, Marco and Humeniuk, Alexander and R{\"o}hr, Merle I. S. and Mitric, Roland and Brixner, Tobias}, title = {Energy Transfer Between Squaraine Polymer Sections: From helix to zig-zag and All the Way Back}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.5b03644}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159607}, year = {2015}, abstract = {Joint experimental and theoretical study of the absorption spectra of squaraine polymers in solution provide evidence that two different conformations are present in solution: a helix and a zig-zag structure. This unique situation allows investigating ultrafast energy transfer processes between different structural segments within a single polymer chain in solution. The understanding of the underlying dynamics is of fundamental importance for the development of novel materials for light-harvesting and optoelectronic applications. We combine here femtosecond transient absorption spectroscopy with time-resolved 2D electronic spectroscopy showing that ultrafast energy transfer within the squaraine polymer chains proceeds from initially excited helix segments to zig-zag segments or vice versa, depending on the solvent as well as on the excitation wavenumber. These observations contrast other conjugated polymers such as MEH-PPV where much slower intrachain energy transfer was reported. The reason for the very fast energy transfer in squaraine polymers is most likely a close matching of the density of states between donor and acceptor polymer segments because of very small reorganization energy in these cyanine-like chromophores.}, language = {en} } @article{DostalFennelKochetal.2018, author = {Dost{\´a}l, Jakub and Fennel, Franziska and Koch, Federico and Herbst, Stefanie and W{\"u}rthner, Frank and Brixner, Tobias}, title = {Direct observation of exciton-exciton interactions}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-04884-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226271}, year = {2018}, abstract = {Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton-exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio-temporal dynamics for a broad range of phenomena in which exciton interactions are present.}, language = {en} } @article{BrixnerKochKullmannetal.2013, author = {Brixner, Tobias and Koch, Federico and Kullmann, Martin and Selig, Ulrike and Nuernberger, Patrick and G{\"o}tz, Daniel C. G. and Bringmann, Gerhard}, title = {Coherent two-dimensional electronic spectroscopy in the Soret band of a chiral porphyrin dimer}, series = {New Journal of Physics}, journal = {New Journal of Physics}, doi = {10.1088/1367-2630/15/2/025006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96139}, year = {2013}, abstract = {Using coherent two-dimensional (2D) electronic spectroscopy in fully noncollinear geometry, we observe the excitonic coupling of β,β'-linked bis[tetraphenylporphyrinato-zinc(II)] on an ultrafast timescale in the excited state. The results for two states in the Soret band originating from an excitonic splitting are explained by population transfer with approximately 100 fs from the energetically higher to the lower excitonic state. This interpretation is consistent with exemplary calculations of 2D spectra for a model four-level system with coupling.}, language = {en} }