@phdthesis{Ye2004, author = {Ye, Fang}, title = {The role of DNA supercoiling in the coordinated regulation of gene expression in Helicobacter pylori}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9878}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Summary Mechanisms of global gene regulation in bacteria are not well characterized yet. Changes in global or local supercoiling of chromosomal DNA are thought to play a role in global gene silencing and gene activation. In Helicobacter pylori, a bacterium with few dedicated transcriptional regulators, the structure of some promoters indicates a dependency on DNA topology. For example, the promoter of the major flagellar subunit gene flaA ({\´o}28-dependent) has a shorter spacing of 13 nucleotides (nt) in comparison to the consensus promoter (15 nt). Supercoiling changes might be a mechanism of gene-specific and global transcriptional regulation in this bacterium. The aim of this study was to elucidate, if changes in global supercoiling have an influence on global gene regulation in H. pylori, and on the temporal regulation of the flagellar biosynthesis pathway in this organism. In the present work, global DNA supercoiling in H. pylori was visualized for the first time, by determining the supercoiling state of plasmids under different growth conditions. Using this method, we showed that cellular supercoiling was clearly growth phase-dependent in H. pylori. Coinciding with increased supercoiling during the growth phases, transcription of the flaA gene was increased, while the transcription of a second {\´o}28-dependent gene with regular promoter spacing (HP0472) was reduced, supporting the hypothesis that growth phase-dependency of promoters might be mediated by changes of DNA topology. Supercoiling in H. pylori could be influenced in a reproducible fashion by inhibition of gyrase using novobiocin, which led to DNA relaxation and to a concomitant decrease of flaA transcript levels. Promoter spacer mutagenesis of the flaA promoter was performed. With flaA promoters of increased or reduced length, transcription of flaA was reduced, less susceptible to supercoiling changes, and, under specific conditions, inverted as compared to the wild type promoter. Transcriptional interdependence between the coupled topA-flaB genes and flaA was found by analysis of the flaA promoter mutants. Chromosomally linked gyrA-flgR, and topA-flaB genes were all dependent on supercoiling and coregulated with each other. Comprehensive transcript profiling (DNA microarrays) of wildtype H. pylori with and without novobiocin treatment identified a number of genes (10\% of total genes), including flagellin, virulence and housekeeping genes, which were strongly dependent on and appeared to be synchronized by supercoiling changes (transcriptional up- or downregulation). These findings indicate a tightly coupled temporal regulation of flagellar biogenesis and metabolism in H. pylori, dependent on global supercoiling. A specific group of genes was also regulated in H. pylori by overexpression of Topoisomerase I, as detected by genome-wide analysis (DNA microarray). The DNA-bending protein HU is thought to be responsible for influencing the negative supercoiling of DNA, through its ability to wrap DNA. HU is encoded by the hup single gene in H. pylori, and constitutively expressed during the whole growth curve. An H. pylori hup mutant was constructed. H. pylori cells lacking HU protein were viable, but exhibited a severe growth defect. Our data indicate that the lack of HU dramatically changes global DNA supercoiling, indicating an important function of HU in chromosome structuring in H. pylori. Transcriptome analyses were performed and demonstrated that a total of 66 genes were differentially transcribed upon hup deletion, which include virulence genes and many other cell functions. The data indicate that HU might act as further important global regulator in H. pylori. Increased gene expression of heat shock proteins and a decreased transcription of the urease gene cluster may indicate a co-ordinated response of H. pylori to changes of environmental conditions in its specific ecological niche, mediated by HU. After the whole genomic sequences of H. pylori strains 26695 and J99 were published, two ORFs (HP0116 and HP0440) were presumptively annotated as topoisomerase I orthologs. HP0116 is the functional H. pylori topoisomerase I (TopA). HP0440 (topA2) was found in only few (5 of 43) strains. Western blot analysis indicated that TopA2 is antigenically different from TopA. TopA2 is transcribed in H. pylori, but the protein must be functionally different from TopA, since it is lacking one functionally essential zinc finger motif, and was not able to functionally complement a TopA-deficient E. coli. Like topA, topA2 was also transcribed in a growth phase-dependent manner. We did not find a function of TopA2 in DNA structuring or topology, but, in the present study, we were able for the first time to establish a unique function for TopA2 in global gene regulation, by comprehensive transcriptome analysis (DNA microarray). Transcriptome analysis showed that a total of 46 genes were differentially regulated upon topA2 deletion, which included flagellar genes and urease genes. These results suggest that TopA2 might act as a novel important regulator of both flagellar biosynthesis and urease in H. pylori.}, subject = {Helicobacter pylori}, language = {en} } @phdthesis{Swiderek2005, author = {Swiderek, Halina}, title = {Typing and genome comparison of Neisseria meningitidis by DNA-microarrays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13374}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In the present thesis, two projects on the use of microarray technology for molecular epidemiology of Neisseria meningitidis have been followed. The first one evaluated microarrays based on polymorphism-directed oligonucleotide design for typing of N. meningitidis adopting the multilocus sequence typing (MLST) concept. The number of oligonucleotides needed to cover all known polymorphisms was much lower compared to the number needed if a tiling strategy would have been chosen. Initial experiments using oligonucleotides 28-32 nucleotides in length, revealed that the applied hybridisation protocols were highly specific. However, despite of several optimisation steps, the rate of misidentification of oligonucleotides remained >1.8\% in consecutive validation experiments using arrays representing the genetic diversity at three MLST loci. This finding led to the assumption that the high density of polymorphic sites and extensive GC-content variations at N. meningitidis MLST loci hindered the successful implementation of MLST microarrays based on polymorphism-directed oligonucleotide design. In the 1980s, the ET-15 clone emerged within the ST-11 complex of N. meningitidis. This new clone was associated with severe meningococcal disease and outbreaks world-wide. Therefore, the goal of the second project was to identify genetic differences between ET-15 strains and other ST-11 strains using whole genome microarray technology. Three genes encoding hypothetical proteins were identified to be present in all ET-15 strains but absent in other ST-11 strains. This finding together with unpublished observation from our group suggested that several genome alterations occurred before the clonal expansion of the ET-15 clone started. The role that these three genes play in the pathogenicity of the ET-15 clone is unclear. The genome comparisons revealed furthermore that studies of the ET-15 clone displayed approximately two-fold less gene content variation than ST-11 strains not belonging to the ET-15 clone. This finding is in accordance with the recent emergence and clonal expansion of the ET-15 variant.}, subject = {Neisseria meningitis}, language = {en} } @phdthesis{Lee2006, author = {Lee, Sae Kyung}, title = {Interaction of Helicobacter pylori flagellins with the host innate immune system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Helicobacter pylori (H. pylori) is a gram-negative, microaerophilic, spiral-shaped bacterium. It resides in the gastric mucous layer and epithelial lining of the stomach, often clustering at the junction of epithelial cells. H. pylori colonization usually occurs during childhood, and, when left untreated, generally persists for the host's lifetime. Persistent H. pylori infection can cause chronic superficial gastritis and gastric duodenal ulcers, which is possibly linked to the development of gastric carcinoma and primary gastric lymphoma, especially of the mucosa-associated lymphoid tissue (MALT) type. It was recently defined as a class 1 carcinogen. The gastric inflammatory response to H. pylori infection is characterized by infiltration of the mucosa by neutrophils, T and B cells, plasma cells and macrophages. This reaction is initially induced by H. pylori attachment, followed by cytokine release by gastric epithelial cells. Epidemiological studies revealed that more than 50\% of adults are infected with H. pylori all over the world. However, interestingly, only a subset of individuals develops serious H. pylori-related disease, while most infected individuals show no clinical symptoms. Gastric epithelial cells, like intestinal epithelial cells, express a subset of Toll-like receptors (TLRs) and similar pattern recognition receptors, which are important for the activation of the innate immune system. Bacterial components such as lipopeptides, peptidoglycan, LPS, flagellin, and CpG DNA are the ligands of TLRs. Thus, TLRs in gastric epithelial cells might be able to contribute to innate immune responses to H. pylori infection. However, there is scant knowledge about the mechanisms of innate immune response to acute and chronic H. pylori infection. This study is focused on host cell interaction with H. pylori flagellins, which are major components of the flagellar apparatus, and innate immune responses against them. The flagellins, which are essential for bacterial motility, are important for H. pylori to survive in the stomach mucus during the whole infectious cycle. Flagellins are known to act as the main determinant of many mucosal pathogenic bacteria that mediates proinflammatory signaling, including transcriptional factor NF-\&\#61547;B activation via TLR5. In the first part of the study, we investigated the effects of H. pylori flagellins on TLR5 expression, NF-\&\#61547;B activation and IL-8 production in various human intestinal and gastric epithelial cell lines by using Western blotting, semi-quantitative RT-PCR and ELISA. IL-8 is a potent neutrophil-activating chemokine expressed by gastric epithelial cells. When we stimulated the cells with the native form of or E. coli-expressed recombinant H. pylori flagellins, FlaA and FlaB, IL-8 was not induced in any case, while S. typhimurium flagellin (FliC) induced it significantly. H. pylori was able to modulate TLR5 protein expression and NF-\&\#61547;B activation in epithelial cells regardless of the presence of flagellins. Having established the finding that H. pylori flagellins have unusually low immune-stimulatory properties, we further investigated to find out possible reasons why H. pylori flagellins are distinct from other flagellins of pathogenic bacteria in terms of immune-stimulatory activity. From amino acid sequence comparisons, we found that some regions in the terminal D0D1 protein domains of H. pylori flagellins are different from flagellins of other pathogenic bacteria. D0D1 is the domain which is known to interact with TLR5 in Salmonella FliC. To examine whether the differences endow H. pylori flagellins with low immune-stimulatory properties, we created several mutated H. pylori flagellins (FlaA and FlaB) by site-directed mutagenesis that contain one to four epitopes of Salmonella flagellin D0D1 domain amino acid sequences. The mutant flagellins expressed both in H. pylori and E. coli were used to determine their influence on TLR5-signaling mediators and cytokines, such as MAPkinases, (ERK, p38), NF-\&\#61547;B, IL-8, and MIP-3\&\#61537;. Salmonella FliC expressed in E. coli induced activation of p38, I\&\#61547;B\&\#61537; and NF-\&\#61547;B leading to IL-8 and MIP-3\&\#61537; production in gastric epithelial cells. However, none of the H. pylori flagellin mutants activated MAP kinases or induced those cytokines. In a co-immunoprecipitation assay none of the recombinant wild type or mutated H. pylori flagellins showed any direct physical interaction with TLR5, while Salmonella FliC significantly co-precipitated with TLR5. Interestingly, we found H. pylori flagellins bind to the surface of gastric epithelial cells like FliC, although they do not bind to or stimulate TLR5. Based on the physical interaction of H. pylori flagellins and FliC with human gastric epithelial cells, we further analyzed transcriptional regulation by H. pylori flagellin in these host cells using microarray analysis. The result showed that H. pylori flagellins modulate host cell gene expression, and many of the identified regulation events overlap with the genes regulated by FliC. These findings imply that H. pylori flagellins do play a role in gene regulation of host cells probably through still unknown factors or receptors, although they do not trigger TLR5-related signaling pathways. The results of our study suggest that, in addition to the low immune-stimulatory activity of H. pylori LPS, the evolutionary reduction in stimulating activity of H. pylori flagellins on the local innate immune responses in the stomach in vivo might be a further strategy of this chronic mucosal pathogen to evade and minimize deleterious host responses, thereby promoting life-long persistence in the host, and possibly contributing to cancerogenesis.}, subject = {Helicobacter pylori}, language = {en} } @phdthesis{Konrad2007, author = {Konrad, Christian}, title = {Molecular analysis of insulin signaling mechanisms in Echinococcus multilocularis and their role in the host-parasite interaction in the alveolar echinococcosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-22636}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The insulin receptor ortholog EmIR of the fox-tapeworm Echinococcus multilocularis displays significant structural homology to the human insulin receptor (HIR) and has been suggested to be involved in insulin sensing mechanisms of the parasite's metacestode larval stage. In the present work, the effects of host insulin on Echinococcus metacestode vesicles and the proposed interaction between EmIR and mammalian insulin have been studied using biochemical and cell-biological approaches. Human insulin, exogenously added to in vitro cultivated parasite larvae, (i) significantly stimulated parasite survival and growth, (ii) induced DNA de novo synthesis in Echinococcus, (iii) affected overall protein phosphorylation in the parasite, and (iv) specifically induced the phosphorylation of the parasite's Erk-like MAP kinase orthologue EmMPK1. These results clearly indicated that Echinococcus metacestode vesicles are able to sense exogenous host insulin which induces a mitogenic response. To investigate whether EmIR mediates these effects, anti-EmIR antibodies were produced and utilized in biochemical assays and immunohistochemical analyses. EmIR was shown to be expressed in the germinal layer of the parasite both on the surface of glycogen storing cells and undifferentiated germinal cells. Upon addition of exogenous insulin to metacestode vesicles, the phosphorylation of EmIR was significantly induced, an effect which was suppressed in the presence of specific inhibitors of insulin receptor-like tyrosine kinases. Furthermore, upon expression of EmIR/HIR receptor chimera containing the extracellular ligand binding domain of EmIR in HEK 293 cells, a specific autophosphorylation of the chimera could be induced through the addition of exogenous insulin. These results indicated the capability of EmIR to sense and to transmit host insulin signals to the Echinococcus signaling machinery. The importance of insulin signaling mechanisms for parasite survival and growth were underscored by in vitro cultivation experiments in which the addition of an inhibitor of insulin receptor tyrosine kinases led to vesicle degradation and death. Based on the above outlined molecular data on the interaction between EmIR and mammalian insulin, the parasite's insulin receptor orthologue most probably mediates the insulin effects on parasite growth and is, therefore, a potential candidate factor for host-parasite communication via evolutionary conserved pathways. In a final set of experiments, signaling mechanisms that act downstream of EmIR have been analyzed. These studies revealed significant differences between insulin signaling in Echinococcus and the related cestode parasite Taenia solium. These differences could be associated with differences in the organo-tropism of both species.}, subject = {Fuchsbandwurm}, language = {en} } @phdthesis{vonSaintAndrevonArnim2007, author = {von Saint Andr{\´e} - von Arnim, Am{\´e}lie}, title = {The Role of Endosymbiotic Wolbachia Bacteria in the Pathogenesis of River Blindness}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31560}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Introduction: This study investigates the role of Wolbachia bacteria in the pathogenesis of O. volvulus keratitis in a mouse model. Wolbachia bacteria are essential symbionts of most filarial nematodes of importance for mankind. Methods: Using a mouse model for river blindness in which soluble extracts of filarial nematodes are injected in the corneal stroma, changes in stromal thickness and haze of the cornea are observed by in vivo confocal microscopy, followed by immunohistochemical staining for neutrophils and PECAM-1, as well as ELISA of corneal chemokines. Reactions to filarial extracts containing Wolbachia are compared to those without the endosymbiont. Results: The approach of characterizing Wolbachia's role in river blindness in this study is threefold. Firstly, Wolbachia-depleted extracts from doxycycline treated onchocerciasis patients led to a diminished inflammatory response in corneas of C57BL/6 mice compared to untreated, i.e. Wolbachia containing antigen. The decreased cell recruitment observed with doxycycline treated extracts involved neutrophils, but not eosinophils. This finding demonstrated that the presence of Wolbachia increases neutrophil recruitment. Secondly, extracts from Wolbachia-containing B. malayi revealed markedly more pathology than endosymbiont-free A. viteae antigen. This again pointed at the role of Wolbachia in development of disease. Thirdly, Toll-like Receptor 4 (TLR4) dependence was shown to exist for the inflammatory response to Wolbachia harboring O. volvulus antigen by looking at the corneal pathology in TLR4-mutant C3H/HeJ mice, compared to the wild-type C3H/HeN strain. Investigating further Wolbachia mediated mechanisms of neutrophil recruitment to the cornea, this study also showed that expression of the adhesion molecule PECAM-1 in limbal vessels, as well as upregulation of the CXC chemokines KC and MIP-2 were dependent on the presence of functional TLR4 and Wolbachia respectively. Conclusions: This study indicates that the innate immune system and Wolbachia endobacteria play an important role in the inflammatory response associated with the pathogenesis of onchocerca keratitis, suggesting a complete alteration in our understanding of the immunopathology of filariasis.}, subject = {Onchozerkose}, language = {en} } @phdthesis{Gelmedin2008, author = {Gelmedin, Verena Magdalena}, title = {Targeting flatworm signaling cascades for the development of novel anthelminthic drugs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33334}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Echinococcus multilocularis verursacht die Alveol{\"a}re Echinokokkose (AE), eine lebendsbedrohliche Krankheit mit limitierten chemotherapeutischen M{\"o}glichkeiten. Die jetzige Anti-AE Chemotherapie basiert auf einer einzigen Wirkstoffklasse, den Benzimidazolen. Obwohl Benzimidazole in vitro parasitozid wirken, wirken sie in vivo bei AE-Behandlung lediglich parasitostatisch und rufen schwere Nebenwirkungen hervor. In F{\"a}llen operabler L{\"a}sionen erfordert die Resektion des Parasitengewebes {\"u}ber einen l{\"a}ngeren Zeitraum eine chemotherapeutische Unterst{\"u}tzung. Damit sind die jetzigen Behandlungsm{\"o}glichkeiten inad{\"a}quat und ben{\"o}tigen Alternativen. In der vorliegenden Arbeit wurden die Signalwege von Plattw{\"u}rmern analysiert, um potentielle Targets f{\"u}r neue therapeutische Ans{\"a}tze zu identifizieren. Dabei konzentrierte ich mich unter Anwendung von molekularbiologischer, biochemischer und zellbiologischer Methoden auf Faktoren, die an Entwicklung und Proliferation von E. multilocularis beteiligt sind. Darunter waren die drei MAP kinases des Parasiten EmMPK1, ein Erk1/2-Ortholog, EmMPK2, ein p38-Ortholog und EmMPK3, ein Erk7/8-Ortholog. Des Weiteren identifizierte und charakterisierte ich EmMKK2, ein MEK1/2-Ortholog des Parasiten, welches zusammen mit den bekannten Kinasen EmRaf und EmMPK1 ein Erk1/2-{\"a}hnliches MAPK Modul bildet. Ich konnte zudem verschiedene Einfl{\"u}sse von Wirtswachstumsfaktoren wie EGF (epidermal growth factor) und Insulin auf die Signalmechanismen des Parasiten und das Larvenwachstum zeigen, darunter die Phosphorylierung von Elp, ein Ezrin-Radixin-Moesin {\"a}hnliches Protein, die Aktivierung von EmMPK1 und EmMPK3 und eine gesteigerte mitotische Aktivit{\"a}t der Echinokokkenzellen. Zus{\"a}tzlich wurden verschiedene Substanzen auf ihre letale Wirkung auf den Parasiten untersucht, darunter befanden sich (1.) generelle Inhibitoren von Tyrosinkinasen (PP2, Leflunamid), (2.) gegen die Aktivit{\"a}t von Rezeptor-Tyrosin-Kinasen gerichtete Pr{\"a}parate, (3.) urspr{\"u}nglich anti-neoplastische Wirkstoffe wie Miltefosin und Perifosin, (4.) Inhibitoren von Serin/ Threonin-Kinasen, die die Erk1/2 MAPK Kaskade blockieren und (5.) Inhibitoren der p38 MAPK. In diesen Untersuchungen hat sich EmMPK2 aus den folgenden Gr{\"u}nden als vielversprechendes Target erwiesen. Aminos{\"a}uresequenz-Analysen offenbarten einige Unterschiede zu menschlichen p38 MAP Kinasen, welche sehr wahrscheinlich die beobachtete gesteigerte basale Aktivit{\"a}t des rekombinanten EmMPK2 verursachen, verglichen mit der Aktivit{\"a}t humaner p38 MAPK-\&\#945;. Zus{\"a}tzlich suggerieren die prominente Autophosphorylierungsaktivit{\"a}t von rekombinantem EmMPK2 und das Ausbleiben einer Interaktion mit den Echinococcus MKKs einen unterschiedlichen Regulierungsmechanismus im Vergleich zu den humanen Proteinen. Die Aktivit{\"a}t von EmMPK2 konnte sowohl in vitro als auch in kultivierten Metazestodenvesikeln durch die Behandlung mit SB202190 und ML3403, zwei ATP kompetitiven Pyridinylimidazolinhibitoren der p38 MAPK, in Konzentrations-abh{\"a}ngiger Weise inhibiert werden. Zudem verursachten beide Substanzen, insbesondere ML3403 die Inaktivierung von Parasitenvesikeln bei Konzentrationen, die kultivierte S{\"a}ugerzellen nicht beeintr{\"a}chtigten. Ebenso verhinderte die Anwesenheit von ML3403 die Generation von neuen Vesikeln w{\"a}hrend der Kultivierung von Echinococcus Prim{\"a}rzellen. Das Targeting von Mitgliedern des EGF-Signalwegs, insbesondere der Erk1/2-{\"a}hnlichen MAPK Kaskade mit Raf- und MEK- Inhibitoren verhinderte die Phosphorylierung von EmMPK1 in in vitro kultivierten Metazestoden. Obwohl das Parasitenwachstum unter diesen Konditionen verhindert wurde, blieb die strukturelle Integrit{\"a}t der Metazestodenvesikeln w{\"a}hrend der Langzeitkultivierung in Anwesenheit der MAPK Kaskade-Inhibitoren erhalten. {\"A}hnliche Effekte wurden beobachtet nach Behandlung mit den anderen zuvor aufgef{\"u}hrten Inhibitoren. Zusammenfassend l{\"a}sst sich festhalten, dass verschiedene Targets identifiziert werden konnten, die hoch sensibel auf die Anwesenheit der inhibitorischen Substanzen reagierten, aber nicht zum Absterben des Parasiten f{\"u}hrten, mit Ausnahme der Pyridinylimidazolen. Die vorliegenden Daten zeigen, dass EmMPK2 ein {\"U}berlebendsignal vermittelnden Faktor darstellt und dessen Inhibierung zur Behandlung der AE benutzt werden k{\"o}nnte. Dabei erwiesen sich p38 MAPK Inhibitoren der Pyridinylimidazolklasse als potentielle neue Substanzklasse gegen Echinokokken.}, subject = {Fuchsbandwurm}, language = {en} } @article{SchubertUnkmeirKonradSlaninaetal.2010, author = {Schubert-Unkmeir, Alexandra and Konrad, Christian and Slanina, Heiko and Czapek, Florian and Hebling, Sabrina and Frosch, Matthias}, title = {Neisseria meningitidis Induces Brain Microvascular Endothelial Cell Detachment from the Matrix and Cleavage of Occludin: A Role for MMP-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68589}, year = {2010}, abstract = {Disruption of the blood-brain barrier (BBB) is a hallmark event in the pathophysiology of bacterial meningitis. Several inflammatory mediators, such as tumor necrosis factor alpha (TNF-a), nitric oxide and matrix metalloproteinases (MMPs), contribute to this disruption. Here we show that infection of human brain microvascular endothelial cells (HBMEC) with Neisseria meningitidis induced an increase of permeability at prolonged time of infection. This was paralleled by an increase in MMP-8 activity in supernatants collected from infected cells. A detailed analysis revealed that MMP-8 was involved in the proteolytic cleavage of the tight junction protein occludin, resulting in its disappearance from the cell periphery and cleavage to a lower-sized 50-kDa protein in infected HBMEC. Abrogation of MMP-8 activity by specific inhibitors as well as transfection with MMP-8 siRNA abolished production of the cleavage fragment and occludin remained attached to the cell periphery. In addition, MMP-8 affected cell adherence to the underlying matrix. A similar temporal relationship was observed for MMP activity and cell detachment. Injury of the HBMEC monolayer suggested the requirement of direct cell contact because no detachment was observed when bacteria were placed above a transwell membrane or when bacterial supernatant was directly added to cells. Inhibition of MMP-8 partially prevented detachment of infected HBMEC and restored BBB permeability. Together, we established that MMP-8 activity plays a crucial role in disassembly of cell junction components and cell adhesion during meningococcal infection.}, subject = {Neisseria meningitidis}, language = {en} } @article{EliasSchoulsvandePoletal.2010, author = {Elias, Johannes and Schouls, Leo M. and van de Pol, Ingrid and Keijzers, Wendy C. and Martin, Diana R. and Glennie, Anne and Oster, Philipp and Frosch, Matthias and Vogel, Ulrich and van der Ende, Arie}, title = {Vaccine Preventability of Meningococcal Clone, Greater Aachen Region, Germany}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68083}, year = {2010}, abstract = {No abstract available}, subject = {IMD}, language = {en} } @article{BeckMorbachBeeretal.2010, author = {Beck, Christine and Morbach, Henner and Beer, Meinrad and Stenzel, Martin and Tappe, Dennis and Gattenl{\"o}hner, Stefan and Hofmann, Ulrich and Raab, Peter and Girschick, Hermann J.}, title = {Chronic nonbacterial osteomyelitis in childhood: prospective follow-up during the first year of anti-inflammatory treatment}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67792}, year = {2010}, abstract = {Introduction: Chronic nonbacterial osteomyelitis (CNO) is an inflammatory disorder of unknown etiology. In children and adolescents CNO predominantly affects the metaphyses of the long bones, but lesions can occur at any site of the skeleton. Prospectively followed cohorts using a standardized protocol in diagnosis and treatment have rarely been reported. Methods: Thirty-seven children diagnosed with CNO were treated with naproxen continuously for the first 6 months. If assessment at that time revealed progressive disease or no further improvement, sulfasalazine and short-term corticosteroids were added. The aims of our short-term follow-up study were to describe treatment response in detail and to identify potential risk factors for an unfavorable outcome. Results: Naproxen treatment was highly effective in general, inducing a symptom-free status in 43\% of our patients after 6 months. However, four nonsteroidal anti-inflammatory drug (NSAID) partial-responders were additionally treated with sulfasalazine and short-term corticosteroids. The total number of clinical detectable lesions was significantly reduced. Mean disease activity estimated by the patient/physician and the physical aspect of health-related quality of life including functional ability (global assessment/childhood health assessment questionnaire and childhood health assessment questionnaire) and pain improved significantly. Forty-one percent of our patients showed radiological relapses, but 67\% of them were clinically silent. Conclusions: Most children show a favorable clinical course in the first year of anti-inflammatory treatment with NSAIDs. Relapses and new radiological lesions can occur at any time and at any site in the skeleton but may not be clinically symptomatic. Whole-body magnetic resonance imaging proved to be very sensitive for initial and follow-up diagnostics.}, subject = {Mikrobiologie}, language = {en} } @phdthesis{Schielke2010, author = {Schielke, Stephanie}, title = {Functional and molecular characterization of FarR - a transcriptional regulator of the MarR family in Neisseria meningitidis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Neisseria meningitidis is a facultatively pathogenic human commensal and strictly adapted to its niche within the human host, the nasopharynx. Not much is known about the regulatory processes required for adaptation to this environment. Therefore the role of the transcriptional regulator NMB1843, one of the two predicted regulators of the MarR family in the meningococcal genome, was investigated. As this gene displayed a high sequence homology to FarR, the Fatty acid resistance Regulator in N. gonorrhoeae, we designated the meningococcal protein FarR (NmFarR). Homology modeling of this protein revealed a dimeric structure with the characteristic winged helix-turn-helix DNA binding motif of the MarR family. NmFarR is highly conserved among meningococcal strains and expression of farR during exponential growth is controlled post-transcriptionally, being highest in the late exponential phase. By means of electrophoretic mobility shift assays (EMSAs) the direct and specific binding of FarR to the farAB promoter region was shown, comparable to its homologue in gonococci. As FarR is involved in fatty acid resistance in N. gonorrhoeae, susceptibility assays with the medium chain lauric acid (C12:0), the long chain saturated palmitic acid (C16:0) and the long chain unsaturated linoleic acid (C18:2) were performed, testing a wide variety of strains of both species. In contrast to the unusually susceptible gonococci, a high intrinsic fatty acid resistance was detected in almost all meningococcal isolates. The molecular basis for this intrinsic resistance in N. meningitidis was elucidated, showing that both a functional FarAB efflux pump system as well as an intact lipopolysaccharide (LPS) are responsible for palmitic acid resistance. However, even despite circumvention of the intrinsic resistance, FarR could not be connected with fatty acid resistance in meningococci. Instead, FarR was shown to directly and specifically repress expression of the Neisseria adhesin A (nadA), a promising vaccine candidate absent in N. gonorrhoeae. Microarray analyses verified these results and disclosed no further similarly regulated genes, rendering the FarR regulon the smallest regulon in meningococci reported until now. The exact FarR binding site within the nadA promoter region was identified as a 16 bp palindromic repeat and its influence on nadA transcription was proved by reporter gene fusion assays. This repression was also shown to be relevant for infection as farR deficient mutant strains displayed an increased attachment to epithelial cells. Furthermore, farR transcription was attested to be repressed upon contact with active complement components within human serum. Concluding, it is shown that FarR adopted a role in meningococcal host niche adaptation, holding the balance between immune evasion by repressing the highly antigenic nadA and host cell attachment via this same adhesin.}, subject = {Transkription }, language = {en} } @article{NellBurgkartGradletal.2011, author = {Nell, Manuel and Burgkart, Rainer H. and Gradl, Guntmar and von Eisenhart-Rothe, R{\"u}diger and Schaeffeler, Christoph and Trappe, Dennis and Prazeres da Costa, Clarissa and Gradinger, Reiner and Kirchhoff, Chlodwig}, title = {Primary extrahepatic alveolar echinococcosis of the lumbar spine and the psoas muscle}, series = {Annals of Clinical Microbiology and Antimicrobials}, volume = {10}, journal = {Annals of Clinical Microbiology and Antimicrobials}, number = {13}, doi = {10.1186/1476-0711-10-13}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141796}, pages = {1-6}, year = {2011}, abstract = {Alveolar echinococcosis (AE) of human being caused by Echinococcus multilocularis is a rare but important zoonosis especially in tempered zones of middle Europe and Northern America with endemic character in many countries. Due to the long incubation period, various clinical manifestations, critical prognosis, and outcome AE presents a serious and severe disease. The primary focus of infection is usually the liver. Although secondary affection of visceral organs is possible extrahepatic AE is highly uncommon. Moreover, the involvement of bone and muscle presents with an even lower incidence. In the literature numerous cases on hepatic AE have been reported. However, extrahepatic AE involving bones and/or muscles was described very rarely. We report a case of an 80-year-old man with primary extrahepatic alveolar Echinococcosis of the lumbar spine and the psoas muscle. The etiology, diagnosis, differential diagnoses, treatment options and outcome of this rare disease are discussed in context with the current literature.}, language = {en} } @article{TappeMeyerOesterleinetal.2011, author = {Tappe, Dennis and Meyer, Michael and Oesterlein, Anett and Jaye, Assan and Frosch, Matthias and Schoen, Christoph and Pantchev, Nikola}, title = {Transmission of Armillifer armillatus Ova at Snake Farm, The Gambia, West Africa}, series = {Emerging Infectious Diseases}, volume = {17}, journal = {Emerging Infectious Diseases}, number = {2}, doi = {10.3201/eid1702.101118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142804}, pages = {251-254}, year = {2011}, abstract = {Visceral pentastomiasis caused by Armillifer armillatus larvae was diagnosed in 2 dogs in The Gambia. Parasites were subjected to PCR; phylogenetic analysis confirmed relatedness with branchiurans/crustaceans. Our investigation highlights transmission of infective A. armillatus ova to dogs and, by serologic evidence, also to 1 human, demonstrating a public health concern.}, language = {en} } @article{HeisigFrentzenBergmannetal.2011, author = {Heisig, Martin and Frentzen, Alexa and Bergmann, Birgit and Gentschev, Katharina Ivaylo and Hotz, Christian and Schoen, Christoph and Stritzker, Jochen and Fensterle, Joachim and Rapp, Ulf R. and Goebel, Werner}, title = {Specific antibody-receptor interactions trigger InlAB-independent uptake of Listeria monocytogenes into tumor cell lines}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68705}, year = {2011}, abstract = {Background: Specific cell targeting is an important, yet unsolved problem in bacteria-based therapeutic applications, like tumor or gene therapy. Here, we describe the construction of a novel, internalin A and B (InlAB)-deficient Listeria monocytogenes strain (Lm-spa+), which expresses protein A of Staphylococcus aureus (SPA) and anchors SPA in the correct orientation on the bacterial cell surface. Results: This listerial strain efficiently binds antibodies allowing specific interaction of the bacterium with the target recognized by the antibody. Binding of Trastuzumab (Herceptin®) or Cetuximab (Erbitux®) to Lm-spa+, two clinically approved monoclonal antibodies directed against HER2/neu and EGFR/HER1, respectively, triggers InlABindependent internalization into non-phagocytic cancer cell lines overexpressing the respective receptors. Internalization, subsequent escape into the host cell cytosol and intracellular replication of these bacteria are as efficient as of the corresponding InlAB-positive, SPA-negative parental strain. This specific antibody/receptormediated internalization of Lm-spa+ is shown in the murine 4T1 tumor cell line, the isogenic 4T1-HER2 cell line as well as the human cancer cell lines SK-BR-3 and SK-OV-3. Importantly, this targeting approach is applicable in a xenograft mouse tumor model after crosslinking the antibody to SPA on the listerial cell surface. Conclusions: Binding of receptor-specific antibodies to SPA-expressing L. monocytogenes may represent a promising approach to target L. monocytogenes to host cells expressing specific receptors triggering internalization.}, subject = {Listeria monocytogenes}, language = {en} } @article{BijuSchwarzLinkeetal.2011, author = {Biju, Joseph and Schwarz, Roland and Linke, Burkhard and Blom, Jochen and Becker, Anke and Claus, Heike and Goesmann, Alexander and Frosch, Matthias and M{\"u}ller, Tobias and Vogel, Ulrich and Schoen, Christoph}, title = {Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0018441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137960}, pages = {e18441}, year = {2011}, abstract = {Background Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40\% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.}, language = {en} } @phdthesis{Hemer2012, author = {Hemer, Sarah}, title = {Molecular characterization of evolutionarily conserved signaling systems of Echinococcus multilocularis and their utilization for the development of novel drugs against Echinococosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74007}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Alveolar echinococcosis (AE), a severe and life-threatening disease is caused by the small fox tapeworm Echinococcus multilocularis. Currently, the options of chemotherapeutic treatment are very limited and are based on benzimidazole compounds, which act merely parasitostatic in vivo and often display strong side effects. Therefore, new therapeutic drugs and targets are urgently needed. In the present work the role of two evolutionarily conserved signalling pathways in E. multilocularis, namely the insulin signalling cascade and Abl kinases, has been studied in regard to host-parasite interaction and the possible use in anti-AE chemotherapy.}, subject = {Fuchsbandwurm}, language = {en} } @article{MaidenFrosch2012, author = {Maiden, Martin C. J. and Frosch, Matthias}, title = {Can we, should we, eradicate the meningococcus?}, series = {Vaccine}, volume = {30}, journal = {Vaccine}, number = {Suppl. 2}, doi = {10.1016/j.vaccine.2011.12.068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125646}, pages = {B52-B56}, year = {2012}, abstract = {The eradication of infectious agents is an attractive means of disease control that, to date, has been achieved for only one human pathogen, the smallpox virus. The introduction of vaccines against Neisseria meningitidis into immunisation schedules, and particularly the conjugate polysaccharide vaccines which can interrupt transmission, raises the question of whether disease caused by this obligate human bacterium can be controlled, eliminated, or even eradicated. The limited number of meningococcal serogroups, lack of an animal reservoir, and importance of meningococcal disease are considerations in favour of eradication; however, the commensal nature of most infections, the high diversity of meningococcal populations, and the lack of comprehensive vaccines are all factors that suggest that this is not feasible. Indeed, any such attempt might be harmful by perturbing the human microbiome and its interaction with the immune system. On balance, the control and possible elimination of disease caused by particular disease-associated meningococcal genotypes is a more achievable and worthwhile goal.}, language = {en} } @article{BarthHerrmannTappeetal.2012, author = {Barth, Thomas F. E. and Herrmann, Tobias S. and Tappe, Dennis and Stark, Lorenz and Gr{\"u}ner, Beate and Buttenschoen, Klaus and Hillenbrand, Andreas and Juchems, Markus and Henne-Bruns, Doris and Kern, Petra and Seitz, Hanns M. and M{\"o}ller, Peter and Rausch, Robert L. and Kern, Peter and Deplazes, Peter}, title = {Sensitive and Specific Immunohistochemical Diagnosis of Human Alveolar Echinococcosis with the Monoclonal Antibody Em2G11}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0001877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135371}, pages = {e1877}, year = {2012}, abstract = {Background: Alveolar echinococcosis (AE) is caused by the metacestode stage of Echinococcus multilocularis. Differential diagnosis with cystic echinococcosis (CE) caused by E. granulosus and AE is challenging. We aimed at improving diagnosis of AE on paraffin sections of infected human tissue by immunohistochemical testing of a specific antibody. Methodology/Principal Findings: We have analysed 96 paraffin archived specimens, including 6 cutting needle biopsies and 3 fine needle aspirates, from patients with suspected AE or CE with the monoclonal antibody (mAb) Em2G11 specific for the Em2 antigen of E. multilocularis metacestodes. In human tissue, staining with mAb Em2G11 is highly specific for E. multilocularis metacestodes while no staining is detected in CE lesions. In addition, the antibody detects small particles of E. multilocularis (spems) of less than 1 mm outside the main lesion in necrotic tissue, liver sinusoids and lymphatic tissue most probably caused by shedding of parasitic material. The conventional histological diagnosis based on haematoxylin and eosin and PAS stainings were in accordance with the immunohistological diagnosis using mAb Em2G11 in 90 of 96 samples. In 6 samples conventional subtype diagnosis of echinococcosis had to be adjusted when revised by immunohistology with mAb Em2G11. Conclusions/Significance: Immunohistochemistry with the mAb Em2G11 is a new, highly specific and sensitive diagnostic tool for AE. The staining of small particles of E. multilocularis (spems) outside the main lesion including immunocompetent tissue, such as lymph nodes, suggests a systemic effect on the host.}, language = {en} } @article{HubertPawlikClausetal.2012, author = {Hubert, Kerstin and Pawlik, Marie-Christin and Claus, Heike and Jarva, Hanna and Meri, Seppo and Vogel, Ulrich}, title = {Opc Expression, LPS Immunotype Switch and Pilin Conversion Contribute to Serum Resistance of Unencapsulated Meningococci}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0045132}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135421}, pages = {e45132}, year = {2012}, abstract = {Neisseria meningitidis employs polysaccharides and outer membrane proteins to cope with human serum complement attack. To screen for factors influencing serum resistance, an assay was developed based on a colorimetric serum bactericidal assay. The screening used a genetically modified sequence type (ST)-41/44 clonal complex (cc) strain lacking LPS sialylation, polysaccharide capsule, the factor H binding protein (fHbp) and MutS, a protein of the DNA repair mechanism. After killing of >99.9\% of the bacterial cells by serum treatment, the colorimetric assay was used to screen 1000 colonies, of which 35 showed enhanced serum resistance. Three mutant classes were identified. In the first class of mutants, enhanced expression of Opc was identified. Opc expression was associated with vitronectin binding and reduced membrane attack complex deposition confirming recent observations. Lipopolysaccharide (LPS) immunotype switch from immunotype L3 to L8/L1 by lgtA and lgtC phase variation represented the second class. Isogenic mutant analysis demonstrated that in ST-41/44 cc strains the L8/L1 immunotype was more serum resistant than the L3 immunotype. Consecutive analysis revealed that the immunotypes L8 and L1 were frequently observed in ST-41/44 cc isolates from both carriage and disease. Immunotype switch to L8/L1 is therefore suggested to contribute to the adaptive capacity of this meningococcal lineage. The third mutant class displayed a pilE allelic exchange associated with enhanced autoaggregation. The mutation of the C terminal hypervariable region D of PilE included a residue previously associated with increased pilus bundle formation. We suggest that autoaggregation reduced the surface area accessible to serum complement and protected from killing. The study highlights the ability of meningococci to adapt to environmental stress by phase variation and intrachromosomal recombination affecting subcapsular antigens.}, language = {en} } @article{SchwerkPapandreouSchuhmannetal.2012, author = {Schwerk, Christian and Papandreou, Thalia and Schuhmann, Daniel and Nickol, Laura and Borkowski, Julia and Steinmann, Ulrike and Quednau, Natascha and Stump, Carolin and Weiss, Christel and Berger, J{\"u}rgen and Wolburg, Hartwig and Claus, Heike and Vogel, Ulrich and Ishikawa, Hiroshi and Tenenbaum, Tobias and Schroten, Horst}, title = {Polar Invasion and Translocation of Neisseria meningitidis and Streptococcus suis in a Novel Human Model of the Blood-Cerebrospinal Fluid Barrier}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0030069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131459}, pages = {e30069}, year = {2012}, abstract = {Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB). Although human brain microvascular endothelial cells (HBMEC) constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP), which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens.}, language = {en} } @article{MoremiMshanaKamugishaetal.2012, author = {Moremi, Nyambura and Mshana, Stephen E. and Kamugisha, Erasmus and Kataraihya, Johannes B. and Tappe, Dennis and Vogel, Ulrich and Lyamuya, Eligius F. and Claus, Heike}, title = {Predominance of methicillin resistant Staphylococcus aureus-ST88 and new ST1797 causing wound infection and abscesses}, series = {Journal of Infection in Developing Countries}, volume = {6}, journal = {Journal of Infection in Developing Countries}, number = {8}, doi = {10.3855/jidc.2093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134746}, pages = {620-625}, year = {2012}, abstract = {Introduction: Although there has been a worldwide emergence and spread of methicillin-resistant Staphylococcus aureus (MRSA), little is known about the molecular epidemiology of MRSA in Tanzania. Methodology: In this study, we characterized MRSA strains isolated from clinical specimens at the Bugando Medical Centre, Tanzania, between January and December 2008. Of 160 S. aureus isolates from 600 clinical specimens, 24 (15\%) were found to be MRSA. Besides molecular screening for the Panton Valentine leukocidin (PVL) genes by PCR, MRSA strains were further characterized by Multi-Locus Sequence Typing (MLST) and spa typing. Results: Despite considerable genetic diversity, the spa types t690 (29.1\%) and t7231 (41.6\%), as well as the sequence types (ST) 88 (54.2\%) and 1797 (29.1\%), were dominant among clinical isolates. The PVL genes were detected in 4 isolates; of these, 3 were found in ST 88 and one in ST1820. Resistance to erythromycin, clindamicin, gentamicin, tetracycline and co-trimoxazole was found in 45.8\%, 62.5\%, 41.6\%, 45.8\% and 50\% of the strains, respectively. Conclusion: We present the first thorough typing of MRSA at a Tanzanian hospital. Despite considerable genetic diversity, ST88 was dominant among clinical isolates at the Bugando Medical Centre. Active and standardized surveillance of nosocomial MRSA infection should be conducted in the future to analyse the infection and transmission rates and implement effective control measures.}, language = {en} }