@article{BeyrichLoefflerKobsaretal.2011, author = {Beyrich, Claudia and L{\"o}ffler, J{\"u}rgen and Kobsar, Anna and Speer, Christian P. and Kneitz, Susanne and Eigenthaler, Martin}, title = {Infection of Human Coronary Artery Endothelial Cells by Group B Streptococcus Contributes to Dysregulation of Apoptosis, Hemostasis, and Innate Immune Responses [Research Article]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68834}, year = {2011}, abstract = {Early onset sepsis due to group B streptococcus leads to neonatal morbidity, increased mortality, and long-term neurological deficencies. Interaction between septicemic GBS and confluent monolayers of human coronary artery endothelial cells (HCAECs) was analyzed by genome wide expression profiling. In total, 124 genes were differentially expressed (89 upregulated, 35 downregulated) based on a more than 3-fold difference to control HCAEC. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, infection, and inflammation. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real-time RT-PCR assay (granulocy te chemotactic protein 2), ELISA (urokinase, cyclooxygenase 2, granulocyte chemotactic protein 1), and western blotting (Heme oxygenase1, BCL2 interacting protein) at various time points between 4 and 24 hours. These results indicate that GBS infection might influence signalling pathways leading to impaired function of the innate immune system and hemorrhagic and inflammatory complications during GBS sepsis.}, subject = {Medizin}, language = {en} } @article{WillemsUrlichsSeidenspinneretal.2012, author = {Willems, Coen H. M. P. and Urlichs, Florian and Seidenspinner, Silvia and Kunzmann, Steffen and Speer, Christian P. and Kramer, Boris W.}, title = {Poractant alfa (Curosurf (R)) increases phagocytosis of apoptotic neutrophils by alveolar macrophages in vivo}, series = {Respiratory Research}, volume = {13}, journal = {Respiratory Research}, number = {17}, doi = {10.1186/1465-9921-13-17}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130721}, year = {2012}, abstract = {Background: Clearance of apoptotic neutrophils in the lung is an essential process to limit inflammation, since they could become a pro-inflammatory stimulus themselves. The clearance is partially mediated by alveolar macrophages, which phagocytose these apoptotic cells. The phagocytosis of apoptotic immune cells by monocytes in vitro has been shown to be augmented by several constituents of pulmonary surfactant, e. g. phospholipids and hydrophobic surfactant proteins. In this study, we assessed the influence of exogenous poractant alfa (Curosurf (R)) instillation on the in vivo phagocytosis of apoptotic neutrophils by alveolar macrophages. Methods: Poractant alfa (200 mg/kg) was instilled intratracheally in the lungs of three months old adult male C57/Black 6 mice, followed by apoptotic neutrophil instillation. Bronchoalveloar lavage was performed and alveolar macrophages and neutrophils were counted. Phagocytosis of apoptotic neutrophils was quantified by determining the number of apoptotic neutrophils per alveolar macrophages. Results: Exogenous surfactant increased the number of alveolar macrophages engulfing apoptotic neutrophils 2.6 fold. The phagocytosis of apoptotic neutrophils was increased in the presence of exogenous surfactant by a 4.7 fold increase in phagocytosed apoptotic neutrophils per alveolar macrophage. Conclusions: We conclude that the anti-inflammatory properties of surfactant therapy may be mediated in part by increased numbers of alveolar macrophages and increased phagocytosis of apoptotic neutrophils by alveolar macrophages.}, language = {en} } @article{LaugFehrholzSchuetzeetal.2012, author = {Laug, Roderich and Fehrholz, Markus and Sch{\"u}tze, Norbert and Kramer, Boris W. and Krump-Konvalinkova, Vera and Speer, Christian P. and Kunzmann, Steffen}, title = {IFN-gamma and TNF-alpha synergize to inhibit CTGF expression in human lung endothelial cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76253}, year = {2012}, abstract = {Connective tissue growth factor (CTGF/CCN2) is an angiogenetic and profibrotic factor, acting downstream of TGF-b, involved in both airway- and vascular remodeling. While the T-helper 1 (Th1) cytokine interferon-gamma (IFN-c) is well characterized as immune-modulatory and anti-fibrotic cytokine, the role of IFN-c in lung endothelial cells (LEC) is less defined. Tumour necrosis factor alpha (TNF-a) is another mediator that drives vascular remodeling in inflammation by influencing CTGF expression. In the present study we investigated the influence of IFN-c and TNF-a on CTGF expression in human LEC (HPMEC-ST1.6R) and the effect of CTGF knock down on human LEC. IFN-c and TNF-a down-regulated CTGF in human LEC at the promoter-, transcriptional- and translational-level in a dose- and time-dependent manner. The inhibitory effect of IFN-c on CTGF-expression could be almost completely compensated by the Jak inhibitor AG-490, showing the involvement of the Jak-Stat signaling pathway. Besides the inhibitory effect of IFN-c and TNF-a alone on CTGF expression and LEC proliferation, these cytokines had an additive inhibitory effect on proliferation as well as on CTGF expression when administered together. To study the functional role of CTGF in LEC, endogenous CTGF expression was down-regulated by a lentiviral system. CTGF silencing in LEC by transduction of CTGF shRNA reduced cell proliferation, but did not influence the anti-proliferative effect of IFN-c and TNF-a. In conclusion, our data demonstrated that CTGF was negatively regulated by IFN-c in LEC in a Jak/Stat signaling pathway-dependent manner. In addition, an additive effect of IFN-c and TNF-a on inhibition of CTGF expression and cell proliferation could be found. The inverse correlation between IFN-c and CTGF expression in LEC could mean that screwing the Th2 response to a Th1 response with an additional IFN-c production might be beneficial to avoid airway remodeling in asthma.}, subject = {Medizin}, language = {en} } @article{FehrholzBersaniKrameretal.2012, author = {Fehrholz, Markus and Bersani, Iliana and Kramer, Boris W. and Speer, Christian P. and Kunzmann, Steffen}, title = {Synergistic Effect of Caffeine and Glucocorticoids on Expression of Surfactant Protein B (SP-B) mRNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77927}, year = {2012}, abstract = {Administration of glucocorticoids and caffeine is a common therapeutic intervention in the neonatal period, but possible interactions between these substances are still unclear. The present study investigated the effect of caffeine and different glucocorticoids on expression of surfactant protein (SP)-B, crucial for the physiological function of pulmonary surfactant. We measured expression levels of SP-B, various SP-B transcription factors including erythroblastic leukemia viral oncogene homolog 4 (ErbB4) and thyroid transcription factor-1 (TTF-1), as well as the glucocorticoid receptor (GR) after administering different doses of glucocorticoids, caffeine, cAMP, or the phosphodiesterase-4 inhibitor rolipram in the human airway epithelial cell line NCI-H441. Administration of dexamethasone (1 mM) or caffeine (5 mM) stimulated SP-B mRNA expression with a maximal of 38.8611.1-fold and 5.261.4-fold increase, respectively. Synergistic induction was achieved after coadministration of dexamethasone (1 mM) in combination with caffeine (10 mM) (206659.7-fold increase, p,0.0001) or cAMP (1 mM) (2136111-fold increase, p = 0.0108). SP-B mRNA was synergistically induced also by administration of caffeine with hydrocortisone (87.9639.0), prednisolone (154666.8), and betamethasone (12366.4). Rolipram also induced SP-B mRNA (64.9621.0-fold increase). We detected a higher expression of ErbB4 and GR mRNA (7.0- and 1.7-fold increase, respectively), whereas TTF-1, Jun B, c-Jun, SP1, SP3, and HNF-3a mRNA expression was predominantly unchanged. In accordance with mRNA data, mature SP-B was induced significantly by dexamethasone with caffeine (13.869.0-fold increase, p = 0.0134). We found a synergistic upregulation of SP-B mRNA expression induced by co-administration of various glucocorticoids and caffeine, achieved by accumulation of intracellular cAMP. This effect was mediated by a caffeinedependent phosphodiesterase inhibition and by upregulation of both ErbB4 and the GR. These results suggested that caffeine is able to induce the expression of SP-transcription factors and affects the signaling pathways of glucocorticoids, amplifying their effects. Co-administration of caffeine and corticosteroids may therefore be of benefit in surfactant homeostasis.}, subject = {Medizin}, language = {en} } @article{NeuhausSamwerKunzmannetal.2012, author = {Neuhaus, Winfried and Samwer, Fabian and Kunzmann, Steffen and Muellenbach, Ralph and Wirth, Michael and Speer, Christian P. and Roewer, Norbert and F{\"o}rster, Carola}, title = {Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model}, series = {Differentiation}, volume = {84}, journal = {Differentiation}, number = {4}, doi = {10.1016/j.diff.2012.08.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90284}, pages = {294-304}, year = {2012}, abstract = {The blood-air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighboured cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood-air barrier.}, language = {en} } @article{LoefflerLoefflerKobsaretal.2015, author = {Loeffler, Claudia and Loeffler, J{\"u}rgen and Kobsar, Anna and Speer, Christian P. and Eigenthaler, Martin}, title = {Septic Vs Colonizing Group B Streptococci Differentially Regulate Inflammation and Apoptosis in Human Coronary Artery Endothelial Cells - a Pilot Study}, series = {Journal of Pediatrics and Neonatal Care}, volume = {2}, journal = {Journal of Pediatrics and Neonatal Care}, number = {2}, doi = {10.15406/jpnc.2015.02.00064}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125596}, pages = {00064}, year = {2015}, abstract = {In this pilot study, we exemplify differences between a septic and a colonizing GBS strain during their interaction with Endothelial Cells by evaluating cytokine levels, surface and apoptosis-related molecules. These preliminary results indicate that in vitro infection using an exemplary septic GBS strain results in diminished activation of the innate immune response.}, language = {en} } @article{NeuhausSchlundtFehrholzetal.2015, author = {Neuhaus, Winfried and Schlundt, Marian and Fehrholz, Markus and Ehrke, Alexander and Kunzmann, Steffen and Liebner, Stefan and Speer, Christian P. and F{\"o}rster, Carola Y.}, title = {Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0136221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125471}, pages = {e0136221}, year = {2015}, abstract = {Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation.}, language = {en} } @article{NeuhausSchlundtFehrholzetal.2015, author = {Neuhaus, Winfried and Schlundt, Marian and Fehrholz, Markus and Ehrke, Alexander and Kunzmann, Steffen and Liebner, Stefan and Speer, Christian P. and F{\"o}rster, Carola Y.}, title = {Multiple antenatal dexamethasone treatment alters brain vessel differentiation in newborn mouse pups}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0136221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148268}, pages = {e0136221}, year = {2015}, abstract = {Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation.}, language = {en} } @article{FehrholzGlaserSeidenspinneretal.2016, author = {Fehrholz, Markus and Glaser, Kirsten and Seidenspinner, Silvia and Ottensmeier, Barbara and Curstedt, Tore and Speer, Christian P. and Kunzmann, Steffen}, title = {Impact of the New Generation Reconstituted Surfactant CHF5633 on Human CD4\(^+\) Lymphocytes}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0153578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146419}, pages = {e0153578}, year = {2016}, abstract = {Background Natural surfactant preparations, commonly isolated from porcine or bovine lungs, are used to treat respiratory distress syndrome in preterm infants. Besides biophysical effectiveness, several studies have documented additional immunomodulatory properties. Within the near future, synthetic surfactant preparations may be a promising alternative. CHF5633 is a new generation reconstituted synthetic surfactant preparation with defined composition, containing dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol and synthetic analogs of surfactant protein (SP-) B and SP-C. While its biophysical effectiveness has been demonstrated in vitro and in vivo, possible immunomodulatory abilities are currently unknown. Aim The aim of the current study was to define a potential impact of CHF5633 and its single components on pro- and anti-inflammatory cytokine responses in human CD4\(^+\) lymphocytes. Methods Purified human CD4\(^+\) T cells were activated using anti CD3/CD28 antibodies and exposed to CHF5633, its components, or to the well-known animal-derived surfactant Poractant alfa (Curosurf®). Proliferative response and cell viability were assessed using flow cytometry and a methylthiazolyldiphenyltetrazolium bromide colorimetric assay. The mRNA expression of IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 was measured by quantitative PCR, while intracellular protein expression was assessed by means of flow cytometry. Results Neither CHF5633 nor any of its phospholipid components with or without SP-B or SP-C analogs had any influence on proliferative ability and viability of CD4\(^+\) lymphocytes under the given conditions. IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 mRNA as well as IFNγ, IL-2, IL-4 and IL-10 protein levels were unaffected in both non-activated and activated CD4+ lymphocytes after exposure to CHF5633 or its constituents compared to non-exposed controls. However, in comparison to Curosurf®, expression levels of anti-inflammatory IL-4 and IL-10 mRNA were significantly increased in CHF5633 exposed CD4\(^+\) lymphocytes. Conclusion For the first time, the immunomodulatory capacity of CHF5633 on CD4\(^+\) lymphocytes was evaluated. CHF5633 did not show any cytotoxicity on CD4\(^+\) cells. Moreover, our in vitro data indicate that CHF5633 does not exert unintended pro-inflammatory effects on non-activated and activated CD4+ T cells. As far as anti-inflammatory cytokines are concerned, it might lack an overall reductive ability in comparison to animal-derived surfactants, potentially leaving pro- and anti-inflammatory cytokine response in balance.}, language = {en} } @article{GlaserFehrholzCurstedtetal.2016, author = {Glaser, Kirsten and Fehrholz, Markus and Curstedt, Tore and Kunzmann, Steffen and Speer, Christian P.}, title = {Effects of the New Generation Synthetic Reconstituted Surfactant CHF5633 on Pro- and Anti-Inflammatory Cytokine Expression in Native and LPS-Stimulated Adult CD14\(^{+}\) Monocytes}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0146898}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180195}, year = {2016}, abstract = {Background Surfactant replacement therapy is the standard of care for the prevention and treatment of neonatal respiratory distress syndrome. New generation synthetic surfactants represent a promising alternative to animal-derived surfactants. CHF5633, a new generation reconstituted synthetic surfactant containing SP-B and SP-C analogs and two synthetic phospholipids has demonstrated biophysical effectiveness in vitro and in vivo. While several surfactant preparations have previously been ascribed immunomodulatory capacities, in vitro data on immunomodulation by CHF5633 are limited, so far. Our study aimed to investigate pro- and anti-inflammatory effects of CHF5633 on native and LPS-stimulated human adult monocytes. Methods Highly purified adult CD14\(^{+}\) cells, either native or simultaneously stimulated with LPS, were exposed to CHF5633, its components, or poractant alfa (Curosurf\(^{®}\)). Subsequent expression of TNF-α, IL-1β, IL-8 and IL-10 mRNA was quantified by real-time quantitative PCR, corresponding intracellular cytokine synthesis was analyzed by flow cytometry. Potential effects on TLR2 and TLR4 mRNA and protein expression were monitored by qPCR and flow cytometry. Results Neither CHF5633 nor any of its components induced inflammation or apoptosis in native adult CD14\(^{+}\) monocytes. Moreover, LPS-induced pro-inflammatory responses were not aggravated by simultaneous exposure of monocytes to CHF5633 or its components. In LPS-stimulated monocytes, exposure to CHF5633 led to a significant decrease in TNF-α mRNA (0.57 ± 0.23-fold, p = 0.043 at 4h; 0.56 ± 0.27-fold, p = 0.042 at 14h). Reduction of LPS-induced IL-1β mRNA expression was not significant (0.73 ± 0.16, p = 0.17 at 4h). LPS-induced IL-8 and IL-10 mRNA and protein expression were unaffected by CHF5633. For all cytokines, the observed CHF5633 effects paralleled a Curosurf®-induced modulation of cytokine response. TLR2 and TLR4 mRNA and protein expression were not affected by CHF5633 and Curosurf®, neither in native nor in LPS-stimulated adult monocytes. Conclusion The new generation reconstituted synthetic surfactant CHF5633 was tested for potential immunomodulation on native and LPS-activated adult human monocytes. Our data confirm that CHF5633 does not exert unintended pro-inflammatory effects in both settings. On the contrary, CHF5633 significantly suppressed TNF-α mRNA expression in LPS-stimulated adult monocytes, indicating potential anti-inflammatory effects.}, language = {en} } @article{FehrholzGlaserSpeeretal.2017, author = {Fehrholz, Markus and Glaser, Kirsten and Speer, Christian P. and Seidenspinner, Silvia and Ottensmeier, Barbara and Kunzmann, Steffen}, title = {Caffeine modulates glucocorticoid-induced expression of CTGF in lung epithelial cells and fibroblasts}, series = {Respiratory Research}, volume = {18}, journal = {Respiratory Research}, number = {51}, doi = {10.1186/s12931-017-0535-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157672}, year = {2017}, abstract = {Background: Although caffeine and glucocorticoids are frequently used to treat chronic lung disease in preterm neonates, potential interactions are largely unknown. While anti-inflammatory effects of glucocorticoids are well defined, their impact on airway remodeling is less characterized. Caffeine has been ascribed to positive effects on airway inflammation as well as remodeling. Connective tissue growth factor (CTGF, CCN2) plays a key role in airway remodeling and has been implicated in the pathogenesis of chronic lung diseases such as bronchopulmonary dysplasia (BPD) in preterm infants. The current study addressed the impact of glucocorticoids on the regulation of CTGF in the presence of caffeine using human lung epithelial and fibroblast cells. Methods: The human airway epithelial cell line H441 and the fetal lung fibroblast strain IMR-90 were exposed to different glucocorticoids (dexamethasone, budesonide, betamethasone, prednisolone, hydrocortisone) and caffeine. mRNA and protein expression of CTGF, TGF-β1-3, and TNF-α were determined by means of quantitative real-time PCR and immunoblotting. H441 cells were additionally treated with cAMP, the adenylyl cyclase activator forskolin, and the selective phosphodiesterase (PDE)-4 inhibitor cilomilast to mimic caffeine-mediated PDE inhibition. Results: Treatment with different glucocorticoids (1 μM) significantly increased CTGF mRNA levels in H441 (p < 0.0001) and IMR-90 cells (p < 0.01). Upon simultaneous exposure to caffeine (10 mM), both glucocorticoid-induced mRNA and protein expression were significantly reduced in IMR-90 cells (p < 0.0001). Of note, 24 h exposure to caffeine alone significantly suppressed basal expression of CTGF mRNA and protein in IMR-90 cells. Caffeine-induced reduction of CTGF mRNA expression seemed to be independent of cAMP levels, adenylyl cyclase activation, or PDE-4 inhibition. While dexamethasone or caffeine treatment did not affect TGF-β1 mRNA in H441 cells, increased expression of TGF-β2 and TGF-β3 mRNA was detected upon exposure to dexamethasone or dexamethasone and caffeine, respectively. Moreover, caffeine increased TNF-α mRNA in H441 cells (6.5 ± 2.2-fold, p < 0.05) which has been described as potent inhibitor of CTGF expression. Conclusions: In addition to well-known anti-inflammatory features, glucocorticoids may have adverse effects on long-term remodeling by TGF-β1-independent induction of CTGF in lung cells. Simultaneous treatment with caffeine may attenuate glucocorticoid-induced expression of CTGF, thereby promoting restoration of lung homeostasis.}, language = {en} } @article{GlaserSilwedelFehrholzetal.2017, author = {Glaser, Kirsten and Silwedel, Christine and Fehrholz, Markus and Waaga-Gasser, Ana M. and Henrich, Birgit and Claus, Heike and Speer, Christian P.}, title = {Ureaplasma Species Differentially Modulate Pro- and Anti-Inflammatory Cytokine Responses in Newborn and Adult Human Monocytes Pushing the State Toward Pro-Inflammation}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {7}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {484}, doi = {10.3389/fcimb.2017.00484}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169958}, year = {2017}, abstract = {Background: Ureaplasma species have been associated with chorioamnionitis and preterm birth and have been implicated in the pathogenesis of neonatal short and long-term morbidity. However, being mostly commensal bacteria, controversy remains on the pro-inflammatory capacity of Ureaplasma. Discussions are ongoing on the incidence and impact of prenatal, perinatal, and postnatal infection. The present study addressed the impact of Ureaplasma isolates on monocyte-driven inflammation. Methods: Cord blood monocytes of term neonates and adult monocytes, either native or LPS-primed, were cultured with Ureaplasma urealyticum (U. urealyticum) serovar 8 (Uu8) and Ureaplasma parvum serovar 3 (Up3). Using qRT-PCR, cytokine flow cytometry, and multi-analyte immunoassay, we assessed mRNA and protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-12p40, IL-10, and IL-1 receptor antagonist (IL-1ra) as well as Toll-like receptor (TLR) 2 and TLR4. Results: Uu8 and Up3 induced mRNA expression and protein release of TNF-α, IL-1β and IL-8 in term neonatal and adult monocytes (p < 0.01 and p < 0.05). Intracellular protein expression of TNF-α, IL-1β and IL-8 in Ureaplasma-stimulated cells paralleled those results. Ureaplasma-induced cytokine levels did not significantly differ from LPS-mediated levels except for lower intracellular IL-1β in adult monocytes (Uu8: p < 0.05). Remarkably, ureaplasmas did not induce IL-12p40 response and promoted lower amounts of anti-inflammatory IL-10 and IL-1ra than LPS, provoking a cytokine imbalance more in favor of pro-inflammation (IL-1β/IL-10, IL-8/IL-10 and IL-8/IL-1ra: p < 0.01, vs. LPS). In contrast to LPS, both isolates induced TLR2 mRNA in neonatal and adult cells (p < 0.001 and p < 0.05) and suppressed TLR4 mRNA in adult monocytes (p < 0.05). Upon co-stimulation, Uu8 and Up3 inhibited LPS-induced intracellular IL-1β (p < 0.001 and p < 0.05) and IL-8 in adult monocytes (p < 0.01), while LPS-induced neonatal cytokines were maintained or aggravated (p < 0.05). Conclusion: Our data demonstrate a considerable pro-inflammatory capacity of Ureaplasma isolates in human monocytes. Stimulating pro-inflammatory cytokine responses while hardly inducing immunomodulatory and anti-inflammatory cytokines, ureaplasmas might push monocyte immune responses toward pro-inflammation. Inhibition of LPS-induced cytokines in adult monocytes in contrast to sustained inflammation in term neonatal monocytes indicates a differential modulation of host immune responses to a second stimulus. Modification of TLR2 and TLR4 expression may shape host susceptibility to inflammation.}, language = {en} } @article{SilwedelSpeerHaarmannetal.2018, author = {Silwedel, Christine and Speer, Christian P. and Haarmann, Axel and Fehrholz, Markus and Claus, Heike and Buttmann, Mathias and Glaser, Kirsten}, title = {Novel insights into neuroinflammation: bacterial lipopolysaccharide, tumor necrosis factor α, and Ureaplasma species differentially modulate atypical chemokine receptor 3 responses in human brain microvascular endothelial cells}, series = {Journal of Neuroinflammation}, volume = {15}, journal = {Journal of Neuroinflammation}, number = {156}, doi = {10.1186/s12974-018-1170-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175952}, year = {2018}, abstract = {Background: Atypical chemokine receptor 3 (ACKR3, synonym CXCR7) is increasingly considered relevant in neuroinflammatory conditions, in which its upregulation contributes to compromised endothelial barrier function and may ultimately allow inflammatory brain injury. While an impact of ACKR3 has been recognized in several neurological autoimmune diseases, neuroinflammation may also result from infectious agents, including Ureaplasma species (spp.). Although commonly regarded as commensals of the adult urogenital tract, Ureaplasma spp. may cause invasive infections in immunocompromised adults as well as in neonates and appear to be relevant pathogens in neonatal meningitis. Nonetheless, clinical and in vitro data on Ureaplasma-induced inflammation are scarce. Methods: We established a cell culture model of Ureaplasma meningitis, aiming to analyze ACKR3 variances as a possible pathomechanism in Ureaplasma-associated neuroinflammation. Non-immortalized human brain microvascular endothelial cells (HBMEC) were exposed to bacterial lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α), and native as well as LPS-primed HBMEC were cultured with Ureaplasma urealyticum serovar 8 (Uu8) and U. parvum serovar 3 (Up3). ACKR3 responses were assessed via qRT-PCR, RNA sequencing, flow cytometry, and immunocytochemistry. Results: LPS, TNF-α, and Ureaplasma spp. influenced ACKR3 expression in HBMEC. LPS and TNF-α significantly induced ACKR3 mRNA expression (p < 0.001, vs. control), whereas Ureaplasma spp. enhanced ACKR3 protein expression in HBMEC (p < 0.01, vs. broth control). Co-stimulation with LPS and either Ureaplasma isolate intensified ACKR3 responses (p < 0.05, vs. LPS). Furthermore, stimulation wielded a differential influence on the receptor's ligands. Conclusions: We introduce an in vitro model of Ureaplasma meningitis. We are able to demonstrate a pro-inflammatory capacity of Ureaplasma spp. in native and, even more so, in LPS-primed HBMEC, underlining their clinical relevance particularly in a setting of co-infection. Furthermore, our data may indicate a novel role for ACKR3, with an impact not limited to auto-inflammatory diseases, but extending to infection-related neuroinflammation as well. AKCR3-induced blood-brain barrier breakdown might constitute a potential common pathomechanism.}, language = {en} } @article{SilwedelHaarmannFehrholzetal.2019, author = {Silwedel, Christine and Haarmann, Axel and Fehrholz, Markus and Claus, Heike and Speer, Christian P. and Glaser, Kirsten}, title = {More than just inflammation: Ureaplasma species induce apoptosis in human brain microvascular endothelial cells}, series = {Journal of Neuroinflammation}, volume = {16}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-019-1413-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200711}, pages = {38}, year = {2019}, abstract = {Background Ureaplasma species (spp.) are commonly regarded as low-virulent commensals but may cause invasive diseases in immunocompromised adults and in neonates, including neonatal meningitis. The interactions of Ureaplasma spp. with host defense mechanisms are poorly understood. This study addressed Ureaplasma-driven cell death, concentrating on apoptosis as well as inflammatory cell death. Methods Human brain microvascular endothelial cells (HBMEC) were exposed to Ureaplasma (U.) urealyticum serovar 8 (Uu8) and U. parvum serovar 3 (Up3). Resulting numbers of dead cells as well as mRNA levels and enzyme activity of key agents in programmed cell death were assessed by flow cytometry, RNA sequencing, and qRT-PCR, respectively. xCELLigence data were used for real-time monitoring of changes in cell adhesion properties. Results Both Ureaplasma isolates induced cell death (p < 0.05, vs. broth). Furthermore, Ureaplasma spp. enhanced mRNA levels for genes in apoptosis, including caspase 3 (Up3 p < 0.05, vs. broth), caspase 7 (p < 0.01), and caspase 9 (Up3 p < 0.01). Caspase 3 activity was increased upon Uu8 exposure (p < 0.01). Vice versa, Ureaplasma isolates downregulated mRNA levels for proteins involved in inflammatory cell death, namely caspase 1 (Uu8 p < 0.01, Up3 p < 0.001), caspase 4 (Uu8 p < 0.05, Up3 p < 0.01), NOD-like receptor pyrin domain-containing 3 (Uu8 p < 0.05), and receptor-interacting protein kinase 3 (p < 0.05). Conclusions By inducing apoptosis in HBMEC as main constituents of the blood-brain barrier, Ureaplasma spp. may provoke barrier breakdown. Simultaneous suppression of inflammatory cell death may additionally attenuate host defense strategies. Ultimate consequence could be invasive and long-term CNS infections by Ureaplasma spp.}, language = {en} } @article{GlaserGradzkaLuczewskaSzymankiewiczBreborowiczetal.2019, author = {Glaser, Kirsten and Gradzka-Luczewska, Anna and Szymankiewicz-Breborowicz, Marta and Kawczynska-Leda, Natalia and Henrich, Birgit and Waaga-Gasser, Ana Maria and Speer, Christian P.}, title = {Perinatal ureaplasma exposure is associated with increased risk of late onset sepsis and imbalanced inflammation in preterm infants and may add to lung injury}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {9}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {68}, doi = {10.3389/fcimb.2019.00068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201270}, year = {2019}, abstract = {Background: Controversy remains concerning the impact of Ureaplasma on preterm neonatal morbidity. Methods: Prospective single-center study in very low birth weight infants <30 weeks' gestation. Cord blood and initial nasopharyngeal swabs were screened for Ureaplasma parvum and U. urealyticum using culture technique and polymerase chain reaction. Neonatal outcomes were followed until death or discharge. Multi-analyte immunoassay provided cord blood levels of inflammatory markers. Using multivariate regression analyses, perinatal Ureaplasma exposure was evaluated as risk factor for the development of bronchopulmonary dysplasia (BPD), other neonatal morbidities until discharge and systemic inflammation at admission. Results: 40/103 (39\%) infants were positive for Ureaplasma in one or both specimens, with U. parvum being the predominant species. While exposure to Ureaplasma alone was not associated with BPD, we found an increased risk of BPD in Ureaplasma-positive infants ventilated ≥5 days (OR 1.64; 95\% CI 0.12-22.98; p = 0.009). Presence of Ureaplasma was associated with a 7-fold risk of late onset sepsis (LOS) (95\% CI 1.80-27.39; p = 0.014). Moreover, Ureaplasma-positive infants had higher I/T ratios (b 0.39; 95\% CI 0.08-0.71; p = 0.014), increased levels of interleukin (IL)-17 (b 0.16; 95\% CI 0.02-0.30; p = 0.025) and matrix metalloproteinase 8 (b 0.77; 95\% CI 0.10-1.44; p = 0.020), decreased levels of IL-10 (b -0.77; 95\% CI -1.58 to -0.01; p = 0.043) and increased ratios of Tumor necrosis factor-α, IL-8, and IL-17 to anti-inflammatory IL-10 (p = 0.003, p = 0.012, p < 0.001). Conclusions: Positive Ureaplasma screening was not associated with BPD. However, exposure contributed to BPD in infants ventilated ≥5 days and conferred an increased risk of LOS and imbalanced inflammatory cytokine responses.}, language = {en} } @article{SilwedelSpeerHaarmannetal.2019, author = {Silwedel, Christine and Speer, Christian P. and Haarmann, Axel and Fehrholz, Markus and Claus, Heike and Schlegel, Nicolas and Glaser, Kirsten}, title = {Ureaplasma species modulate cytokine and chemokine responses in human brain microvascular endothelial cells}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {14}, issn = {1422-0067}, doi = {10.3390/ijms20143583}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201848}, year = {2019}, abstract = {Ureaplasma species are common colonizers of the adult genitourinary tract and often considered as low-virulence commensals. Intraamniotic Ureaplasma infections, however, facilitate chorioamnionitis and preterm birth, and cases of Ureaplasma-induced neonatal sepsis, pneumonia, and meningitis raise a growing awareness of their clinical relevance. In vitro studies are scarce but demonstrate distinct Ureaplasma-driven impacts on immune mechanisms. The current study addressed cytokine and chemokine responses upon exposure of native or lipopolysaccharide (LPS) co-stimulated human brain microvascular endothelial cells (HBMEC) to Ureaplasma urealyticum or U. parvum, using qRT-PCR, RNA sequencing, multi-analyte immunoassay, and flow cytometry. Ureaplasma exposure in native HBMEC reduced monocyte chemoattractant protein (MCP)-3 mRNA expression (p < 0.01, vs. broth). In co-stimulated HBMEC, Ureaplasma spp. attenuated LPS-evoked mRNA responses for C-X-C chemokine ligand 5, MCP-1, and MCP-3 (p < 0.05, vs. LPS) and mitigated LPS-driven interleukin (IL)-1α protein secretion, as well as IL-8 mRNA and protein responses (p < 0.05). Furthermore, Ureaplasma isolates increased C-X-C chemokine receptor 4 mRNA levels in native and LPS co-stimulated HBMEC (p < 0.05). The presented results may imply immunomodulatory capacities of Ureaplasma spp. which may ultimately promote chronic colonization and long-term neuroinflammation.}, language = {en} } @article{RufThomasBrunneretal.2019, author = {Ruf, Katharina and Thomas, Wolfgang and Brunner, Maximilian and Speer, Christian P. and Hebestreit, Helge}, title = {Diverging effects of premature birth and bronchopulmonary dysplasia on exercise capacity and physical activity - a case control study}, series = {Respiratory Research}, volume = {20}, journal = {Respiratory Research}, doi = {10.1186/s12931-019-1238-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202449}, pages = {260}, year = {2019}, abstract = {Background Extreme prematurity has been associated with exercise intolerance and reduced physical activity. We hypothesized that children with bronchopulmonary dysplasia (BPD) would be especially affected based on long-term lung function impairments. Therefore, the objective of this study was to compare exercise capacity and habitual physical activity between children born very and extremely preterm with and without BPD and term-born children. Methods Twenty-two school-aged children (aged 8 to 12 years) born with a gestational age < 32 weeks and a birthweight < 1500 g (9 with moderate or severe BPD (=BPD), 13 without BPD (=No-BPD)) and 15 healthy term-born children (=CONTROL) were included in the study. Physical activity was measured by accelerometry, lung function by spirometry and exercise capacity by an incremental cardiopulmonary exercise test. Results Peak oxygen uptake was reduced in the BPD-group (83 ± 11\%predicted) compared to the No-BPD group (91 ± 8\%predicted) and the CONTROL group (94 ± 9\%predicted). In a general linear model, variance of peak oxygen uptake was significantly explained by BPD status and height but not by prematurity (p < 0.001). Compared to CONTROL, all children born preterm spent significantly more time in sedentary behaviour (BPD 478 ± 50 min, No-BPD 450 ± 52 min, CONTROL 398 ± 56 min, p < 0.05) and less time in moderate-to-vigorous-physical activity (BPD 13 ± 8 min, No-BPD 16 ± 8 min, CONTROL 33 ± 16 min, p < 0.001). Prematurity but not BPD contributed significantly to explained variance in a general linear model of sedentary behaviour and likewise moderate-to-vigorous-physical activity (p < 0.05 and p < 0.001 respectively). Conclusion In our cohort, BPD but not prematurity was associated with a reduced exercise capacity at school-age. However, prematurity regardless of BPD was related to less engagement in physical activity and more time spent in sedentary behaviour. Thus, our findings suggest diverging effects of prematurity and BPD on exercise capacity and physical activity."}, language = {en} } @article{GlaserSpeerWright2020, author = {Glaser, Kirsten and Speer, Christian P. and Wright, Clyde J.}, title = {Fine tuning non-invasive respiratory support to prevent lung injury in the extremely premature infant}, series = {Frontiers in Pediatrics}, volume = {7}, journal = {Frontiers in Pediatrics}, issn = {2296-2360}, doi = {10.3389/fped.2019.00544}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193762}, year = {2020}, abstract = {Within the last decades, therapeutic advances, such as antenatal corticosteroids, surfactant replacement, monitored administration of supplemental oxygen, and sophisticated ventilatory support have significantly improved the survival of extremely premature infants. In contrast, the incidence of some neonatal morbidities has not declined. Rates of bronchopulmonary dysplasia (BPD) remain high and have prompted neonatologists to seek effective strategies of non-invasive respiratory support in high risk infants in order to avoid harmful effects associated with invasive mechanical ventilation. There has been a stepwise replacement of invasive mechanical ventilation by early continuous positive airway pressure (CPAP) as the preferred strategy for initial stabilization and for early respiratory support of the premature infant and management of respiratory distress syndrome. However, the vast majority of high risk babies are mechanically ventilated at least once during their NICU stay. Adjunctive therapies aiming at the prevention of CPAP failure and the support of functional residual capacity have been introduced into clinical practice, including alternative techniques of administering surfactant as well as non-invasive ventilation approaches. In contrast, the strategy of applying sustained lung inflations in the delivery room has recently been abandoned due to evidence of higher rates of death within the first 48 h of life.}, language = {en} } @article{LorenzKressZaumetal.2021, author = {Lorenz, Delia and Kress, Wolfram and Zaum, Ann-Kathrin and Speer, Christian P. and Hebestreit, Helge}, title = {Report of two siblings with spondylodysplastic Ehlers-Danlos syndrome and B4GALT7 deficiency}, series = {BMC Pediatrics}, volume = {21}, journal = {BMC Pediatrics}, doi = {10.1186/s12887-021-02767-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261084}, year = {2021}, abstract = {Background The spondylodysplastic Ehlers-Danlos subtype (OMIM \#130070) is a rare connective tissue disorder characterized by a combination of connective tissue symptoms, skeletal features and short stature. It is caused by variants in genes encoding for enzymes involved in the proteoglycan biosynthesis or for a zinc transporter. Presentation of cases We report two brothers with a similar phenotype of short stature, joint hypermobility, distinct craniofacial features, developmental delay and severe hypermetropia indicative for a spondylodysplastic Ehlers-Danlos subtype. One also suffered from a recurrent pneumothorax. Gene panel analysis identified two compound heterozygous variants in the B4GALT7 gene: c.641G > A and c.723 + 4A > G. B4GALT7 encodes for galactosyltransferase I, which is required for the initiation of glycosaminoglycan side chain synthesis of proteoglycans. Conclusions This is a first full report on two cases with spondylodysplastic Ehlers-Danlos syndrome and the c.723 + 4A > G variant of B4GALT7. The recurrent pneumothoraces observed in one case expand the variable phenotype of the syndrome.}, language = {en} } @article{LorenzMusacchioKunstmannetal.2022, author = {Lorenz, Delia and Musacchio, Thomas and Kunstmann, Erdmute and Grauer, Eva and Pluta, Natalie and Stock, Annika and Speer, Christian P. and Hebestreit, Helge}, title = {A case report of Sanfilippo syndrome - the long way to diagnosis}, series = {BMC Neurology}, volume = {22}, journal = {BMC Neurology}, number = {1}, doi = {10.1186/s12883-022-02611-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300465}, year = {2022}, abstract = {Background Mucopolysaccharidosis type III (Sanfilippo syndrome) is a lysosomal storage disorder, caused by a deficiency in the heparan-N-sulfatase enzyme involved in the catabolism of the glycosaminoglycan heparan sulfate. It is characterized by early nonspecific neuropsychiatric symptoms, followed by progressive neurocognitive impairment in combination with only mild somatic features. In this patient group with a broad clinical spectrum a significant genotype-phenotype correlation with some mutations leading to a slower progressive, attenuated course has been demonstrated. Case presentation Our patient had complications in the neonatal period and was diagnosed with Mucopolysaccharidosis IIIa only at the age of 28 years. He was compound heterozygous for the variants p.R245H and p.S298P, the latter having been shown to lead to a significantly milder phenotype. Conclusions The diagnostic delay is even more prolonged in this patient population with comorbidities and a slowly progressive course of the disease.}, language = {en} }