@phdthesis{Duerig2011, author = {D{\"u}rig, Tobias}, title = {Fracture dynamics in silicate glasses}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Understanding the mechanisms of fragmentation within silicate melts is of great interest not only for material science, but also for volcanology, particularly regarding molten fuel coolant-interactions (MFCIs). Therefore edge-on hammer impact experiments (HIEs) have been carried out in order to analyze the fracture dynamics in well defined targets by applying a Cranz-Schardin highspeed camera technique. This thesis presents the corresponding results and provides a thorough insight into the dynamics of fragmentation, particularly focussing on the processes of energy dissipation. In HIEs two main classes of cracks can be identified, characterized by completely different fracture mechanisms: Shock wave induced "damage cracks" and "normal cracks", which are exclusively caused by shear-stresses. This dual fracture situation is taken into account by introducing a new concept, according to which the crack class-specific fracture energies are linearly correlated with the corresponding fracture areas. The respective proportionality constants - denoted "fracture surface energy densities" (FSEDs) - have been quantified for all studied targets under various constraints. By analyzing the corresponding high speed image sequences and introducing useful dynamic parameters it has been possible to specify and describe in detail the evolution of fractures and, moreover, to quantify the energy dissipation rates during the fragmentation. Additionally, comprehensive multivariate statistical analyses have been carried out which have revealed general dependencies of all relevant fracture parameters as well as characteristics of the resulting particles. As a result, an important principle of fracture dynamics has been found, referred to as the "local anisotropy effect": According to this principle, the fracture dynamics in a material is significantly affected by the location of directed stresses. High local stress gradients cause a more stable crack propagation and consequently a reduction of the energy dissipation rates. As a final step, this thesis focusses on the volcanological conclusions which can be drawn on the basis of the presented HIE results. Therefore fragments stemming from HIEs have been compared with natural and experimental volcanic ash particles of basaltic Grimsv{\"o}tn and rhyolitic Tepexitl melts. The results of these comparative particle analyses substantiate HIEs to be a very suitable method for reproducing the MFCI loading conditions in silicate melts and prove the FSED concept to be a model which is well transferable to volcanic fragmentation processes.}, subject = {Bruchmechanik}, language = {en} } @article{DuerigGudmundssonKarmannetal.2015, author = {D{\"u}rig, Tobias and Gudmundsson, Magn{\´u}s Tumi and Karmann, Sven and Zimanowski, Bernd and Dellino, Pierfrancesco and Rietze, Martin and B{\"u}ttner, Ralf}, title = {Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition-a case study of the 2010 eruption of Eyjafjallaj{\"o}kull, Iceland}, series = {Earth, Planets and Space}, volume = {67}, journal = {Earth, Planets and Space}, number = {180}, doi = {10.1186/s40623-015-0351-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138635}, year = {2015}, abstract = {The 2010 eruption of Eyjafjallajokull volcano was characterized by pulsating activity. Discrete ash bursts merged at higher altitude and formed a sustained quasi-continuous eruption column. High-resolution near-field videos were recorded on 8-10 May, during the second explosive phase of the eruption, and supplemented by contemporary aerial observations. In the observed period, pulses occurred at intervals of 0.8 to 23.4 s (average, 4.2 s). On the basis of video analysis, the pulse volume and the velocity of the reversely buoyant jets that initiated each pulse were determined. The expansion history of jets was tracked until the pulses reached the height of transition from a negatively buoyant jet to a convective buoyant plume about 100 m above the vent. Based on the assumption that the density of the gas-solid mixture making up the pulse approximates that of the surrounding air at the level of transition from the jet to the plume, a mass flux ranging between 2.2 and 3.5 . 10\(^4\) kg/s was calculated. This mass eruption rate is in good agreement with results obtained with simple models relating plume height with mass discharge at the vent. Our findings indicate that near-field measurements of eruption source parameters in a pulsating eruption may prove to be an effective monitoring tool. A comparison of the observed pulses with those generated in calibrated large-scale experiments reveals very similar characteristics and suggests that the analysis of near-field sensors could in the future help to constrain the triggering mechanism of explosive eruptions.}, language = {en} }