@article{WeissenseelGottschollBoennighausenetal.2021, author = {Weissenseel, Sebastian and Gottscholl, Andreas and B{\"o}nnighausen, Rebecca and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Long-lived spin-polarized intermolecular exciplex states in thermally activated delayed fluorescence-based organic light-emitting diodes}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {47}, doi = {10.1126/sciadv.abj9961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265508}, year = {2021}, abstract = {Spin-spin interactions in organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) are pivotal because radiative recombination is largely determined by triplet-to-singlet conversion, also called reverse intersystem crossing (RISC). To explore the underlying process, we apply a spin-resonance spectral hole-burning technique to probe electroluminescence. We find that the triplet exciplex states in OLEDs are highly spin-polarized and show that these states can be decoupled from the heterogeneous nuclear environment as a source of spin dephasing and can even be coherently manipulated on a spin-spin relaxation time scale T-2* of 30 ns. Crucially, we obtain the characteristic triplet exciplex spin-lattice relaxation time T-1 in the range of 50 mu s, which far exceeds the RISC time. We conclude that slow spin relaxation rather than RISC is an efficiency-limiting step for intermolecular donor:acceptor systems. Finding TADF emitters with faster spin relaxation will benefit this type of TADF OLEDs.}, language = {en} } @article{KiermaschFischerGilEscrigetal.2021, author = {Kiermasch, David and Fischer, Mathias and Gil-Escrig, Lid{\´o}n and Baumann, Andreas and Bolink, Henk J. and Dyakonov, Vladimir and Tvingstedt, Kristofer}, title = {Reduced Recombination Losses in Evaporated Perovskite Solar Cells by Postfabrication Treatment}, series = {Solar RRL}, volume = {5}, journal = {Solar RRL}, number = {11}, doi = {10.1002/solr.202100400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258003}, year = {2021}, abstract = {The photovoltaic perovskite research community has now developed a large set of tools and techniques to improve the power conversion efficiency (PCE). One such arcane trick is to allow the finished devices to dwell in time, and the PCE often improves. Herein, a mild postannealing procedure is implemented on coevaporated perovskite solar cells confirming a substantial PCE improvement, mainly attributed to an increased open-circuit voltage (V\(_{OC}\)). From a V\(_{OC}\) of around 1.11 V directly after preparation, the voltage improves to more than 1.18 V by temporal and thermal annealing. To clarify the origin of this annealing effect, an in-depth device experimental and simulation characterization is conducted. A simultaneous reduction of the dark saturation current, the ideality factor (n\(_{id}\)), and the leakage current is revealed, signifying a substantial impact of the postannealing procedure on recombination losses. To investigate the carrier dynamics in more detail, a set of transient optoelectrical methods is first evaluated, ascertaining that the bulk carrier lifetime is increased with device annealing. Second, a drift-diffusion simulation is used, confirming that the beneficial effect of the annealing has its origin in effective bulk trap passivation that accordingly leads to a reduction of Shockley-Read-Hall recombination rates.}, language = {en} } @article{BunzmannKrugmannWeissenseeletal.2021, author = {Bunzmann, Nikolai and Krugmann, Benjamin and Weissenseel, Sebastian and Kudriashova, Liudmila and Ivaniuk, Khrystyna and Stakhira, Pavlo and Cherpak, Vladyslav and Chapran, Marian and Grybauskaite-Kaminskiene, Gintare and Grazulevicius, Juozas Vidas and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Spin- and Voltage-Dependent Emission from Intra- and Intermolecular TADF OLEDs}, series = {Advanced Electronic Materials}, volume = {7}, journal = {Advanced Electronic Materials}, number = {3}, doi = {10.1002/aelm.202000702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224434}, year = {2021}, abstract = {Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near-orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, 4,4′-(9H,9′H-[3,3′-bicarbazole]-9,9′-diyl)bis(3-(trifluoromethyl) benzonitrile) (pCNBCzoCF\(_{3}\)) is investigated, which shows intramolecular TADF but can also form exciplex states in combination with 4,4′,4′′-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA). Orange emitting exciplex-based OLEDs additionally generate a sky-blue emission from the intramolecular emitter with an intensity that can be voltage-controlled. Electroluminescence detected magnetic resonance (ELDMR) is applied to study the thermally activated spin-dependent triplet to singlet up-conversion in operating devices. Thereby, intermediate excited states involved in OLED operation can be investigated and the corresponding activation energy for both, intra- and intermolecular based TADF can be derived. Furthermore, a lower estimate is given for the extent of the triplet wavefunction to be ≥ 1.2 nm. Photoluminescence detected magnetic resonance (PLDMR) reveals the population of molecular triplets in optically excited thin films. Overall, the findings allow to draw a comprehensive picture of the spin-dependent emission from intra- and intermolecular TADF OLEDs.}, language = {en} } @article{GottschollDiezSoltamovetal.2021, author = {Gottscholl, Andreas and Diez, Matthias and Soltamov, Victor and Kasper, Christian and Krauße, Dominik and Sperlich, Andreas and Kianinia, Mehran and Bradac, Carlo and Aharonovich, Igor and Dyakonov, Vladimir}, title = {Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-24725-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261581}, year = {2021}, abstract = {Spin defects in solid-state materials are strong candidate systems for quantum information technology and sensing applications. Here we explore in details the recently discovered negatively charged boron vacancies (V\(_B\)\(^-\)) in hexagonal boron nitride (hBN) and demonstrate their use as atomic scale sensors for temperature, magnetic fields and externally applied pressure. These applications are possible due to the high-spin triplet ground state and bright spin-dependent photoluminescence of the V\(_B\)\(^-\). Specifically, we find that the frequency shift in optically detected magnetic resonance measurements is not only sensitive to static magnetic fields, but also to temperature and pressure changes which we relate to crystal lattice parameters. We show that spin-rich hBN films are potentially applicable as intrinsic sensors in heterostructures made of functionalized 2D materials.}, language = {en} }