@phdthesis{Gieseking2014, author = {Gieseking, Bj{\"o}rn}, title = {Excitation Dynamics and Charge Carrier Generation in Organic Semiconductors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101625}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The transport of optically excited states, called excitons, as well as their conversion into charges define the two major steps allowing for the operation of organic photovoltaic (OPV) devices. Hence, a deep understanding of these processes, the involved mechanisms as well as possible loss channels is crucial for further improving the efficiency of organic solar cells. For studying the aforementioned processes spectroscopic methods like absorption and emission measurements are useful tools. As many of the processes take place on a sub-nanosecond (ns) timescale ultrafast spectroscopic methods are required. Due to this reason two experiments based on a femtosecond laser system were built and employed in this work, namely picosecond (ps) time-resolved photoluminescence (PL) and transient absorption (TA) spectroscopy. By analyzing the PL decay dynamics in the prototypical organic semiconductor rubrene, the feasibility of a new approach for improving the efficiency of organic solar cells by harvesting triplet excitons generated by singlet fission was examined. Singlet fission describes a process where two triplet excitons are generated via a photoexcited singlet exciton precursor state if the energy of the two triplets is comparable with the energy of the singlet. For this purpose the influence of characteristic length scales on the exciton dynamics in different rubrene morphologies exhibiting an increasing degree of confinement was analyzed. The results show that the quenching at interfacial states efficiently suppresses the desired fission process if these states are reached by excitons during migration. Since interfacial states are expected to play a significant role in thin film solar cells and are easily accessible for the migrating excitons, the results have to be considered for triplet-based OPV. While the aforementioned approach is only investigated for model systems so far, the efficiency of disordered organic bulk heterojunction (BHJ) solar cells could be significantly enhanced in the last couple of years by employing new and more complex copolymer donor materials. However, little is known about the photophysics and in particular the excitation dynamics of these systems. By carrying out a systematic optical study on the prominent copolymer PCDTBT and its building blocks we were able to identify the nature of the two characteristic absorption bands and the coupling mechanism between these levels. The latter mechanism is based on an intrachain partial charge transfer between two functional subunits and our time-resolved measurements indicate that this coupling governs the photophysical properties of solar cells based on these copolymers. The efficient coupling of functional subunits can be seen as a key aspect that guarantees for the success of the copolymer approach. Another important issue concerns the optimization of the morphology of BHJ solar cells. It arises from the discrepancy between the exciton diffusion length \mbox{(\$\approx\$ 10 nm)} and the absorption length of solar irradiation (\$\approx\$ 100 nm). Due to this reason, even for devices based on new copolymer materials, processing parameters affecting the morphology like annealing or employing processing additives are of major importance. In our combined optical, electrical and morphological study for solar cells based on the high-efficient copolymer PBDTTT-C we find a direct correlation between additive content and intermixing of the active layer. The observed maximum in device efficiency can be attributed to a morphology guaranteeing for an optimized balance between charge generation and transport. Our results highlight the importance of understanding the influence of processing parameters on the morphology of the BHJ and thus on the efficiency of the device.}, subject = {Organische Solarzelle}, language = {en} } @article{ZusanGiesekingZersonetal.2015, author = {Zusan, Andreas and Gieseking, Bj{\"o}rn and Zerson, Mario and Dyakonov, Vladimir and Magerle, Robert and Deibel, Carsten}, title = {The Effect of Diiodooctane on the Charge Carrier Generation in Organic Solar Cells Based on the Copolymer PBDTTT-C}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, doi = {10.1038/srep08286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125022}, pages = {8286}, year = {2015}, abstract = {Microstructural changes and the understanding of their effect on photocurrent generation are key aspects for improving the efficiency of organic photovoltaic devices. We analyze the impact of a systematically increased amount of the solvent additive diiodooctane (DIO) on the morphology of PBDTTT-C:PC71BM blends and related changes in free carrier formation and recombination by combining surface imaging, photophysical and charge extraction techniques. We identify agglomerates visible in AFM images of the 0\% DIO blend as PC71BM domains embedded in an intermixed matrix phase. With the addition of DIO, a decrease in the size of fullerene domains along with a demixing of the matrix phase appears for 0.6\% and 1\% DIO. Surprisingly, transient absorption spectroscopy reveals an efficient photogeneration already for the smallest amount of DIO, although the largest efficiency is found for 3\% DIO. It is ascribed to a fine-tuning of the blend morphology in terms of the formation of interpenetrating donor and acceptor phases minimizing geminate and nongeminate recombination as indicated by charge extraction experiments. An increase in the DIO content to 10\% adversely affects the photovoltaic performance, most probably due to an inefficient free carrier formation and trapping in a less interconnected donor-acceptor network.}, language = {en} }