@article{AeschlimannBrixnerCinchettietal.2017, author = {Aeschlimann, Martin and Brixner, Tobias and Cinchetti, Mirko and Frisch, Benjamin and Hecht, Bert and Hensen, Matthias and Huber, Bernhard and Kramer, Christian and Krauss, Enno and Loeber, Thomas H. and Pfeiffer, Walter and Piecuch, Martin and Thielen, Philip}, title = {Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas}, series = {Light: Science \& Applications}, volume = {6}, journal = {Light: Science \& Applications}, doi = {10.1038/lsa.2017.111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173265}, year = {2017}, abstract = {Radiationless energy transfer is at the core of diverse phenomena, such as light harvesting in photosynthesis\(^1\), energy-transfer-based microspectroscopies\(^2\), nanoscale quantum entanglement\(^3\) and photonic-mode hybridization\(^4\). Typically, the transfer is efficient only for separations that are much shorter than the diffraction limit. This hampers its application in optical communication and quantum information processing, which require spatially selective addressing. Here, we demonstrate highly efficient radiationless coherent energy transfer over a distance of twice the excitation wavelength by combining localized and delocalized\(^5\) plasmonic modes. Analogous to the Tavis-Cummings model, two whispering-gallery-mode antennas\(^6\) placed in the foci of an elliptical plasmonic cavity\(^7\) fabricated from single-crystal gold plates act as a pair of oscillators coupled to a common cavity mode. Time-resolved two-photon photoemission electron microscopy (TR 2P-PEEM) reveals an ultrafast long-range periodic energy transfer in accordance with the simulations. Our observations open perspectives for the optimization and tailoring of mesoscopic energy transfer and long-range quantum emitter coupling.}, language = {en} } @unpublished{MuellerDraegerMaetal.2018, author = {M{\"u}ller, Stefan and Draeger, Simon and Ma, Kiaonan and Hensen, Matthias and Kenneweg, Tristan and Pfeiffer, Walter and Brixner, Tobias}, title = {Fluorescence-Detected Two-Quantum and One-Quantum-Two-Quantum 2D Electronic Spectroscopy}, series = {Journal of Physical Chemistry Letters}, journal = {Journal of Physical Chemistry Letters}, doi = {10.1021/acs.jpclett.8b00541}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173468}, year = {2018}, abstract = {We demonstrate two-quantum (2Q) coherent two-dimensional (2D)electronic spectroscopy using a shot-to-shot-modulated pulse shaper and fluorescence detection. Broadband collinear excitation is realized with the supercontinuum output of an argon-filled hollow-core fiber, enabling us to excite multiple transitions simultaneously in the visible range. The 2Q contribution is extracted via a three-pulse sequence with 16-fold phase cycling and simulated employing cresyl violet as a model system. Furthermore, we report the first experimental realization of one-quantum-two-quantum (1Q-2Q) 2D spectroscopy, offering less congested spectra as compared with the 2Q implementation. We avoid scattering artifacts and nonresonant solvent contributions by using fluorescence as the observable. This allows us to extract quantitative information about doubly excited states that agree with literature expectations. The high sensitivity and background-free nature of fluorescence detection allow for a general applicability of this method to many other systems.}, subject = {Fluoreszenz}, language = {en} } @unpublished{HuberPresWittmannetal.2019, author = {Huber, Bernhard and Pres, Sebastian and Wittmann, Emanuel and Dietrich, Lysanne and L{\"u}ttig, Julian and Fersch, Daniel and Krauss, Enno and Friedrich, Daniel and Kern, Johannes and Lisinetskii, Victor and Hensen, Matthias and Hecht, Bert and Bratschitsch, Rudolf and Riedle, Eberhard and Brixner, Tobias}, title = {Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate}, issn = {0034-6748}, doi = {10.1063/1.5115322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191906}, year = {2019}, abstract = {We describe a setup for time-resolved photoemission electron microscopy (TRPEEM) with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215-970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications. Efficient photoemission from plasmonic Au nanoresonators is investigated with phase-coherent pulse pairs from an actively stabilized interferometer. More complex excitation fields are created with a liquid-crystal-based pulse shaper enabling amplitude and phase shaping of NOPA pulses with spectral components from 600 to 800 nm. With this system we demonstrate spectroscopy within a single plasmonic nanoslit resonator by spectral amplitude shaping and investigate the local field dynamics with coherent two-dimensional (2D) spectroscopy at the nanometer length scale ("2D nanoscopy"). We show that the local response varies across a distance as small as 33 nm in our sample. Further, we report two-color pump-probe experiments using two independent NOPA beamlines. We extract local variations of the excited-state dynamics of a monolayered 2D material (WSe2) that we correlate with low-energy electron microscopy (LEEM) and reflectivity (LEER) measurements. Finally, we demonstrate the in-situ sample preparation capabilities for organic thin films and their characterization via spatially resolved electron diffraction and dark-field LEEM.}, language = {en} } @unpublished{FerschMalyRueheetal.2023, author = {Fersch, Daniel and Mal{\´y}, Pavel and R{\"u}he, Jessica and Lisinetskii, Victor and Hensen, Matthias and W{\"u}rthner, Frank and Brixner, Tobias}, title = {Single-Molecule Ultrafast Fluorescence-Detected Pump-Probe Microscopy}, doi = {10.25972/OPUS-31348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313485}, year = {2023}, abstract = {We introduce fluorescence-detected pump-probe microscopy by combining a wavelength-tunable ultrafast laser with a confocal scanning fluorescence microscope, enabling access to the femtosecond time scale on the micrometer spatial scale. In addition, we obtain spectral information from Fourier transformation over excitation pulse-pair time delays. We demonstrate this new approach on a model system of a terrylene bisimide (TBI) dye embedded in a PMMA matrix and acquire the linear excitation spectrum as well as time-dependent pump-probe spectra simultaneously. We then push the technique towards single TBI molecules and analyze the statistical distribution of their excitation spectra. Furthermore, we demonstrate the ultrafast transient evolution of several individual molecules, highlighting their different behavior in contrast to the ensemble due to their individual local environment. By correlating the linear and nonlinear spectra, we assess the effect of the molecular environment on the excited-state energy.}, subject = {Fluoreszenz}, language = {en} }