@unpublished{HennigPrustyKauferetal.2021, author = {Hennig, Thomas and Prusty, Archana B. and Kaufer, Benedikt and Whisnant, Adam W. and Lodha, Manivel and Enders, Antje and Thomas, Julius and Kasimir, Francesca and Grothey, Arnhild and Herb, Stefanie and J{\"u}rges, Christopher and Meister, Gunter and Erhard, Florian and D{\"o}lken, Lars and Prusty, Bhupesh K.}, title = {Selective inhibition of microRNA processing by a herpesvirus-encoded microRNA triggers virus reactivation from latency}, edition = {submitted version}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267858}, year = {2021}, abstract = {Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation thereof 1,2. A long appreciated, yet elusively defined relationship exists between the lytic-latent switch and viral non-coding RNAs 3,4. Here, we identify miRNA-mediated inhibition of miRNA processing as a novel cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defense and drive the latent-lytic switch. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective pri-miRNA hairpin loops. Subsequent loss of miR-30 and activation of miR-30/p53/Drp1 axis triggers a profound disruption of mitochondrial architecture, which impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 was sufficient to trigger virus reactivation from latency thereby identifying it as a readily drugable master regulator of the herpesvirus latent-lytic switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 provides exciting therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders like myalgic encephalitis/chronic fatigue syndrome (ME/CFS) and Long-COVID.}, language = {en} } @article{LodhaErhardDoelkenetal.2022, author = {Lodha, Manivel and Erhard, Florian and D{\"o}lken, Lars and Prusty, Bhupesh K.}, title = {The hidden enemy within: non-canonical peptides in virus-induced autoimmunity}, series = {Frontiers in Microbiology}, volume = {13}, journal = {Frontiers in Microbiology}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.840911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263053}, year = {2022}, abstract = {Viruses play a key role in explaining the pathogenesis of various autoimmune disorders, whose underlying principle is defined by the activation of autoreactive T-cells. In many cases, T-cells escape self-tolerance due to the failure in encountering certain MHC-I self-peptide complexes at substantial levels, whose peptides remain invisible from the immune system. Over the years, contribution of unstable defective ribosomal products (DRiPs) in immunosurveillance has gained prominence. A class of unstable products emerge from non-canonical translation and processing of unannotated mammalian and viral ORFs and their peptides are cryptic in nature. Indeed, high throughput sequencing and proteomics have revealed that a substantial portion of our genomes comprise of non-canonical ORFs, whose generation is significantly modulated during disease. Many of these ORFs comprise short ORFs (sORFs) and upstream ORFs (uORFs) that resemble DRiPs and may hence be preferentially presented. Here, we discuss how such products, normally "hidden" from the immune system, become abundant in viral infections activating autoimmune T-cells, by discussing their emerging role in infection and disease. Finally, we provide a perspective on how these mechanisms can explain several autoimmune disorders in the wake of the COVID-19 pandemic.}, language = {en} } @article{LodhaMuchsinJuergesetal.2023, author = {Lodha, Manivel and Muchsin, Ihsan and J{\"u}rges, Christopher and Juranic Lisnic, Vanda and L'Hernault, Anne and Rutkowski, Andrzej J. and Prusty, Bhupesh K. and Grothey, Arnhild and Milic, Andrea and Hennig, Thomas and Jonjic, Stipan and Friedel, Caroline C. and Erhard, Florian and D{\"o}lken, Lars}, title = {Decoding murine cytomegalovirus}, series = {PLOS Pathogens}, volume = {19}, journal = {PLOS Pathogens}, number = {5}, issn = {1553-7374}, doi = {10.1371/journal.ppat.1010992}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350480}, year = {2023}, abstract = {The genomes of both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) were first sequenced over 20 years ago. Similar to HCMV, the MCMV genome had initially been proposed to harbor ≈170 open reading frames (ORFs). More recently, omics approaches revealed HCMV gene expression to be substantially more complex comprising several hundred viral ORFs. Here, we provide a state-of-the art reannotation of lytic MCMV gene expression based on integrative analysis of a large set of omics data. Our data reveal 365 viral transcription start sites (TiSS) that give rise to 380 and 454 viral transcripts and ORFs, respectively. The latter include 200 small ORFs, some of which represented the most highly expressed viral gene products. By combining TiSS profiling with metabolic RNA labelling and chemical nucleotide conversion sequencing (dSLAM-seq), we provide a detailed picture of the expression kinetics of viral transcription. This not only resulted in the identification of a novel MCMV immediate early transcript encoding the m166.5 ORF, which we termed ie4, but also revealed a group of well-expressed viral transcripts that are induced later than canonical true late genes and contain an initiator element (Inr) but no TATA- or TATT-box in their core promoters. We show that viral upstream ORFs (uORFs) tune gene expression of longer viral ORFs expressed in cis at translational level. Finally, we identify a truncated isoform of the viral NK-cell immune evasin m145 arising from a viral TiSS downstream of the canonical m145 mRNA. Despite being ≈5-fold more abundantly expressed than the canonical m145 protein it was not required for downregulating the NK cell ligand, MULT-I. In summary, our work will pave the way for future mechanistic studies on previously unknown cytomegalovirus gene products in an important virus animal model.}, language = {en} }