@article{KirylukYifuSannaCherchietal.2012, author = {Kiryluk, Krzysztof and Yifu, Li and Sanna-Cherchi, Simone and Rohanizadegan, Mersedeh and Suzuki, Hitoshi and Eitner, Frank and Snyder, Holly J. and Choi, Murim and Hou, Ping and Scolari, Francesco and Izzi, Claudia and Gigante, Maddalena and Gesualdo, Loreto and Savoldi, Silvana and Amoroso, Antonio and Cusi, Daniele and Zamboli, Pasquale and Julian, Bruce A. and Novak, Jan and Wyatt, Robert J. and Mucha, Krzysztof and Perola, Markus and Kristiansson, Kati and Viktorin, Alexander and Magnusson, Patrik K. and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Stefansson, Kari and Boland, Anne and Metzger, Marie and Thibaudin, Lise and Wanner, Christoph and Jager, Kitty J. and Goto, Shin and Maixnerova, Dita and Karnib, Hussein H. and Nagy, Judit and Panzer, Ulf and Xie, Jingyuan and Chen, Nan and Tesar, Vladimir and Narita, Ichiei and Berthoux, Francois and Floege, J{\"u}rgen and Stengel, Benedicte and Zhang, Hong and Lifton, Richard P. and Gharavi, Ali G.}, title = {Geographic Differences in Genetic Susceptibility to IgA Nephropathy: GWAS Replication Study and Geospatial Risk Analysis}, series = {PLoS Genetics}, volume = {8}, journal = {PLoS Genetics}, number = {6}, doi = {10.1371/journal.pgen.1002765}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130195}, pages = {e1002765}, year = {2012}, abstract = {IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5x10\(^{-32}\) 3x10\(^{-10}\), with heterogeneity detected only at the PSMB9/TAP1 locus (I\(^{-2}\) = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5x10\(^{-4}\)). A seven-SNP genetic risk score, which explained 4.7\% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3x10\(^{-128}\)). This model paralleled the known East-West gradient in disease risk. Moreover, the prediction of a South-North axis was confirmed by registry data showing that the prevalence of IgAN-attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world populations. These findings inform genetic, biological, and epidemiological investigations of IgAN and permit cross-comparison with other complex traits that share genetic risk loci and geographic patterns with IgAN.}, language = {en} } @article{MitchellLiWeinholdetal.2016, author = {Mitchell, Jonathan S. and Li, Ni and Weinhold, Niels and F{\"o}rsti, Asta and Ali, Mina and van Duin, Mark and Thorleifsson, Gudmar and Johnson, David C. and Chen, Bowang and Halvarsson, Britt-Marie and Gudbjartsson, Daniel F. and Kuiper, Rowan and Stephens, Owen W. and Bertsch, Uta and Broderick, Peter and Campo, Chiara and Einsele, Hermann and Gregory, Walter A. and Gullberg, Urban and Henrion, Marc and Hillengass, Jens and Hoffmann, Per and Jackson, Graham H. and Johnsson, Ellinor and J{\"o}ud, Magnus and Kristinsson, Sigurdur Y. and Lenhoff, Stig and Lenive, Oleg and Mellqvist, Ulf-Henrik and Migliorini, Gabriele and Nahi, Hareth and Nelander, Sven and Nickel, Jolanta and N{\"o}then, Markus M. and Rafnar, Thorunn and Ross, Fiona M. and da Silva Filho, Miguel Inacio and Swaminathan, Bhairavi and Thomsen, Hauke and Turesson, Ingemar and Vangsted, Annette and Vogel, Ulla and Waage, Anders and Walker, Brian A. and Wihlborg, Anna-Karin and Broyl, Annemiek and Davies, Faith E. and Thorsteinsdottir, Unnur and Langer, Christian and Hansson, Markus and Kaiser, Martin and Sonneveld, Pieter and Stefansson, Kari and Morgan, Gareth J. and Goldschmidt, Hartmut and Hemminki, Kari and Nilsson, Bj{\"o}rn and Houlston, Richard S.}, title = {Genome-wide association study identifies multiple susceptibility loci for multiple myeloma}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165983}, pages = {12050}, year = {2016}, abstract = {Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10-8), 6q21 (rs9372120, P=9.09 × 10-15), 7q36.1 (rs7781265, P=9.71 × 10-9), 8q24.21 (rs1948915, P=4.20 × 10-11), 9p21.3 (rs2811710, P=1.72 × 10-13), 10p12.1 (rs2790457, P=1.77 × 10-8), 16q23.1 (rs7193541, P=5.00 × 10-12) and 20q13.13 (rs6066835, P=1.36 × 10-13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development.}, language = {en} } @article{IslesIngasonLowtheretal.2016, author = {Isles, Anthony R. and Ingason, Andr{\´e}s and Lowther, Chelsea and Walters, James and Gawlick, Micha and St{\"o}ber, Gerald and Rees, Elliott and Martin, Joanna and Little, Rosie B. and Potter, Harry and Georgieva, Lyudmila and Pizzo, Lucilla and Ozaki, Norio and Aleksic, Branko and Kushima, Itaru and Ikeda, Masashi and Iwata, Nakao and Levinson, Douglas F. and Gejman, Pablo V. and Shi, Jianxin and Sanders, Alan R. and Duan, Jubao and Willis, Joseph and Sisodiya, Sanjay and Costain, Gregory and Werge, Thomas M. and Degenhardt, Franziska and Giegling, Ina and Rujescu, Dan and Hreidarsson, Stefan J. and Saemundsen, Evald and Ahn, Joo Wook and Ogilvie, Caroline and Girirajan, Santhosh D. and Stefansson, Hreinn and Stefansson, Kari and O'Donovan, Michael C. and Owen, Michael J. and Bassett, Anne and Kirov, George}, title = {Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {5}, doi = {10.1371/journal.pgen.1005993}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166706}, pages = {e1005993}, year = {2016}, abstract = {Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76\% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033\% compared to 0.0069\% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50\% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.}, language = {en} }