@article{LambrechtGmelinRafeineretal.1988, author = {Lambrecht, G. and Gmelin, G. and Rafeiner, K. and Strohmann, C. and Tacke, Reinhold and Mutschler, E.}, title = {o-Methoxy-sila-hexocyclium: a new quaternary M\(_1\)-selective muscarinic antagonist}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63862}, year = {1988}, abstract = {No abstract available}, subject = {Anorganische Chemie}, language = {en} } @article{LambrechtFeifelForthetal.1988, author = {Lambrecht, G. and Feifel, R. and Forth, B. and Strohmann, C. and Tacke, Reinhold and Mutschler, E.}, title = {p-Fluoro-hexahydro-sila-difenidol: the first M\(_{2\beta}\)-selective muscarinic antagonist}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63872}, year = {1988}, abstract = {No abstract available}, subject = {Anorganische Chemie}, language = {en} } @article{EltzeGmelinWessetal.1988, author = {Eltze, M. and Gmelin, G. and Wess, J. and Strohmann, C. and Tacke, Reinhold and Mutschler, E. and Lambrecht, G.}, title = {Presynaptic muscarinic receptors mediating inhibition of neurogenic contractions in rabbit vas deferens are of the ganglionic M\(_1\)-type}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63912}, year = {1988}, abstract = {The present study was designed to further charaeterize the presynaptie musearlnie M\(_1\)-reeeptor responsible for the inhibition of neuragenie eontraetions in the isolated rabbit vas deferens. Eleetrically induced twiteh eontraetions of this preparation were inhibited by the M\(_1\)-agonist, MeN-A-343, and by some of its analogs: 4-ehloro-phenyl derivative> MeN-A-343 > trans-olefinie analog> cis-olefinie analog. The same rank order of potency was observed for these agonists to raise the blood pressure of pithed rats by stimulation of M\(_1\)-receptors in sympathetie ganglia. A highly signifieant eorrelation was found between the antimusearinie potencies of atropine, pirenzepine and a series of 9 antagonists strueturally related to the ganglionie M\(_{1\beta}\)-receptor selective compounds, hexocyclium and hexahydro-difenidol, to antagonize the MeN-A-343-indueed inhibition of twitch eontraetions in rabbit vas deferens or the musearine-indueed depolarization in rat isolated superior eerVieal ganglia. It is suggested that the presynaptie musearlnie receptor that mediates inhibition of neuragenie contraetions in rabbit vas deferens is of the ganglionic M\(_{1\beta}\)-type.}, subject = {Anorganische Chemie}, language = {en} } @article{TackeRafeinerStrohmannetal.1989, author = {Tacke, Reinhold and Rafeiner, K. and Strohmann, C. and Mutschler, E. and Lambrecht, G.}, title = {Synthesis of the selective antimuscarinic agent 4-{[cyclohexylhydroxy(2-methoxyphenyl)silyl]methyl}-1,1-dimethylpiperazinium methyl sulfate (o-methoxy-sila-hexocyclium methyl sulfate)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63930}, year = {1989}, abstract = {The synthesis of the potent and highly selective silicon-containing antimuscarinic agent o-methoxysila- hexocyclium methyl sulfate and its corresponding tertiary amine (isolated as the dihydrochloride) is described. The quarternary compound is an omethoxy derivative of sila-hexocyclium methyl sulfate, which represents one of the tools currently used in experimental pharmacology for the subclassification of muscarinic receptors. The omethoxy derivative, the pharmacological profile of which differs substantially from tbat of the nonmethoxy compound, is also recommended as a tool for the investigation of muscarinic receptor heterogeneity.}, subject = {Anorganische Chemie}, language = {en} } @article{WaelbroeckTastenoyCamusetal.1989, author = {Waelbroeck, M. and Tastenoy, M. and Camus, J. and Christophe, J. and Strohmann, C. and Linoh, H. and Zilch, H. and Tacke, Reinhold and Mutschler, E. and Lambrecht, G.}, title = {Binding and functional properties of antimuscarinics of the hexocyclium/sila-hexocyclium and hexahydro-diphenidol/hexahydro-sila-diphenidol type to muscarinic receptor subtypes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63944}, year = {1989}, abstract = {l In an attempt to assess the structural requirements for the musearlnie receptor selectivity of hexahydro-diphenidol (hexahydro-difenidol) and hexahydro-sila-diphenidol (hexahydro-sila-difenidol), a serles of structurally related C/Si pairs were investigated, along with atropine, pirenzepine and methoctramine, for their binding affinities in NB-OK 1 cells as well as in rat heart and pancreas. 2 The action of these antagonists at musearlnie receptors mediating negative inotropic responses in guinea-pig atrla and ileal contractions has also been assessed. 3 Antagonist binding data indicated that NB-OK 1 cells (M\(_1\) type) as weil as rat heart (cardiac type) and pancreas (glandularjsmooth muscle type) possess different muscarinic receptor subtypes. 4 A highly significant correlation was found between the binding affinities of the antagonists to muscarinic receptors in rat heart and pancreas, respectively, and the affinities to muscarinic receptors in guinea-pig atria and ileum. This implies that the musearlnie binding sites in rat heart and the receptors in guinea-pig atrla are essentially similar, but different from those in pancreas and ileum. 5 The antimuscarinic potency of hexahydro-diphenidol and hexahydro-sila-diphenidol at the three subtypes was inftuenced differently by structural modifications (e.g. quaternization). Different selectivity profiles for the antagonists were obtained, which makes these compounds useful tools to investigate further muscarinic receptor heterogeneity. lndeed, the tertiary analogues hexahydrodiphenidol (HHD) and hexahydro-sila-diphenidol (HHSiD) bad an M\(_1\) = glandularjsmooth muscle > cardiac selectivity profile, whereas the quaternary analogues HHD methiodide and HHSiD methiodide were M\(_1\) preferring (M\(_1\) > glandularjsmooth muscle, cardiac).}, subject = {Anorganische Chemie}, language = {en} } @article{TackeStrohmannSargeetal.1989, author = {Tacke, Reinhold and Strohmann, C. and Sarge, S. and Cammenga, H. K. and Schomburg, D. and Mutschler, E. and Lambrecht, G.}, title = {Darstellung und Eigenschaften der Enantiomere des selektiven Antimuscarinikums 1-Cyclohexyl-1-phenyl-4-piperidino-1-butanol (Hexahydro-Difenidol)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63950}, year = {1989}, abstract = {No abstract available}, subject = {Anorganische Chemie}, language = {en} } @article{LambrechtFeifelWagnerRoederetal.1989, author = {Lambrecht, G. and Feifel, R. and Wagner-R{\"o}der, M. and Strohmann, C. and Zilch, H. and Tacke, Reinhold and Waelbroeck, M. and Christophe, J. and Boddeke, H. and Mutschler, E.}, title = {Affinity profiles of hexahydro-sila-difenidol analogues at muscarinic receptor subtypes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63979}, year = {1989}, abstract = {In an attempt to assess the structural requirements of hexahydro-sila-difenidol for potency and selectivity, a series of analogues modified in the amino group and the phenyl ring were investigated for their affinity to muscarinic M1- (rabbit vas deferens), Mr (guinea-pig atria) and Mr (guinea-pig ileum) receptors. All compounds were competitive antagonists in the three tissues. Their affinities to the three muscarinic receptor subtypes differed by more than two orders of magnitude and the observed receptor selectivities were not associated with high affinity. The pyrrolidino and hexamethyleneimino analogues, compounds substituted in the phenylring with a methoxy group or a chlorine atom as weil as p-fluoro-hexahydro-difenidol displayed the same affinity profile as the parent compound, hexahydro-sila-difenidol: M1 = M3 > M2 • A different selectivity patternwas observed for p-fluoro-hexahydro-sila-difenidol: M3 > M1 > M2 • This compound exhibited its highest affinity for M3-receptors in guinea-pig ileum (pA 2 = 7.84), intermediate affinity for M1-receptors in rabbit vas deferens (pA 2 = 6.68) and lowest affinity for the Mrreceptors in guinea-pig atria (pA 2 = 6.01). This receptor selectivity profile of p-fluoro-hexahydro-sila-difenidol was confirmed in ganglia (M1), atria (M2 ) and ileum (M 3 ) of the rat. Furthermore, dose ratios obtained with either pirenzepine (Mt) or hexahydrosila- difenidol (M2 and M3) and the p-fluoro analogue used in combination suggested that the antagonism was additive, implying mutual competition with a single population of muscarinic receptor subtypes. These results indicate that p-fluoro-hexahydro-sila-difenidol represents a valuable tool for characterization of muscarinic receptor subtypes.}, subject = {Anorganische Chemie}, language = {en} } @article{FeifelWagnerRoederStrohmannetal.1990, author = {Feifel, R. and Wagner-R{\"o}der, M. and Strohmann, C. and Tacke, Reinhold and Waelbroeck, M. and Christophe, J. and Mutschler, E. and Lambrecht, G.}, title = {Stereoselective inhibition of muscarinic receptor subtypes by the enantiomers of hexahydro-difenidol and acetylenic analogues}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64002}, year = {1990}, abstract = {1 Tbc affinities of the (R)- and (S)-enantiomers of hexahydro-difenidol (1) and its acetylenie analogues hexbutinol (2), hexbutinol methiodide (3) and p-fluoro-hexbutinol (4) (stereochemieal purity > 99.8\%) for musearlnie receptors in rabbit vas deferens (M1), guinea-pig atria (M2) and guinea-pig ileum (M3) were measured by dose-ratio experiments. 2 The (R)-enantiomers consistently showed higher aßinities than the (S)-isomers. The stereosclectivity ratios [(R)/(S)] wcrc greatest with thc enantiomers of 1 (vas deferens: 550; ilcum: 191; atria: 17) and least with thosc ofthc p-Fluoro-analogue 4 (vas defercns: 34; ileum: 8.5; atria: 1.7). 3 The enantiomerie potency ratios for compounds 1-4 were highest in rabbit vas deferens, intermediate in guinea-pig ileum and much less in guinea-pig atria. Thus, these ratios may serve as a predietor of muscarinic receptor subtype identity. 4 (S)-p-Fluoro-hexbutinol [(S)-4] showed a novel receptor selectivity profile with preference for M\(_3\) receptors: M\(_3\) > M\(_2\) \(\geq\) M\(_1\)• 5 These results do not conform to Pfeiffer's rule that aetivity differences between enantiomers are greater with more potent compounds.}, subject = {Anorganische Chemie}, language = {en} } @article{RettenmayrRodriguesdeMirandaRijntjesetal.1990, author = {Rettenmayr, N. M. and Rodrigues de Miranda, J. F. and Rijntjes, N. V. M. and Russel, F. G. M. and van Ginneken, C. A. M. and Strohmann, C. and Tacke, Reinhold and Lambrecht, G. and Mutschler, E.}, title = {Pharmacokinetic properties of the antimuscarinic drug [\(^3\)H]-hexahydro-sila-difenidol in the rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64022}, year = {1990}, abstract = {The pharmacokinetics of tritiated hexahydrosila- difenidol ([\(^3\)H]-HHSiD) were examined in rats. Furthermore, the distribution of radioactivity was studied by means of whole body autoradiography. After i. v. administration of 2.9 mg/kg HHSiD plus [\(^3\)H]-HHSiD to anaesthetized rats bearing a catheter implanted in the ductus choledochus and receiving a mannitol infusion, HHSiD was rapidly distributed and metabolized. Only 5\% ofthe radioactivity was recovered in blood after 23 s and 0.4\% after 2.5 h. 64\% of the plasma radioactivity could be extracted with hexane from the samples taken 23 s after administration. 52\% of the radioactivity was eliminated within 2.5 h, 13\% by urinary and 39\% by biliary excretion. Following oral administration of 8.6 mg/kg HHSiD plus [\(^3\)H]-HHSiD there was an absorption of approximately one fourth of the administered radioactivity within 4 h. By means of whole body autoradiography (i. v. injection) as well as by tissue distribution measurement the highest Ievels of radioactivity were found in bile, urine, lung, kidney, adrenals, liver and .pancreas. Thus, after i. v. administration to rats HHSiD is rather quickly distributed, metabolized and excreted. This explains its low antimuscarinic potency in vivo.}, subject = {Anorganische Chemie}, language = {en} } @article{FeifelRodriguesdeMirandaStrohmannetal.1991, author = {Feifel, R. and Rodrigues de Miranda, J. F. and Strohmann, C. and Tacke, Reinhold and Aasen, A. J. and Mutschler, E. and Lambrecht, G.}, title = {Selective labelling of muscarinic M\(_1\) receptors in calf superior cervical ganglia by [\(^3\)H](\(\pm\))-telenzepine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64082}, year = {1991}, abstract = {A method was developed to detennine the affinities of antimuscarinic drugs at M\(_1\) receptors. [\(^3\)H](±)-Telenzepine served as radioligand in crude preparations of calf superior cervical ganglia and showed high affinity for a single receptor population. consisting of M1 receptors (K\(_D\) = 1.12 nM). Kinetic experiments showed monophasic association (k\(_1\) =0.017 min\(^{-1}\) nM\(^{-1}\) ) and dissociation (k\(_1\) = 0.017 min\(^{-1}\) ) kinetics, the half-life of dissociation being 41 min at 37°C. The kinetie K\(_D\) value amounted to 1.00 nM. M\(_1\) affinities for pirenzepine, methoctramine. hexahydro-sila-difenidol and p-fluoro-hexahydro-sila-difenidol detennined in competition experiments were similar to those found in functional studies with MI receptors in rabbit isolated vas deferens. The binding assay was used to deterriline the affinities of the (R) and (S) enantiomers of tertiary (trihexyphenidyl, hexahydro-difenidol. hexbutinol, p-fluoro-hexbutinol) and quatemary musearlnie antagonists (trihexyphenidyl methiodide. hexbutinol methiodide). Comparison of results obtained with the rabbit vas deferens suggested that the ionic environment may influence the affinities.}, subject = {Anorganische Chemie}, language = {en} } @article{StrohmannTackeMatternetal.1991, author = {Strohmann, C. and Tacke, Reinhold and Mattern, G. and Kuhs, W. F.}, title = {Bis(2,3-naphthalindiolato)[2-(pyrrolidinio)ethyl]silicat: Synthese und strukturelle Charakterisierung eines zwitterionischen \(\lambda_5\)-Spirosilicates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64095}, year = {1991}, abstract = {The zwi tterionic spirocyclic bis(2,3-naphthalenediolato )[2-(pyrrolidinio )ethyl]silicate [ ( C\(_{10}\)H\(_6\)O\(_2\)-SiCH\(_2\)CH\(_2\)(H)NC\(_4\)H\(_8\), 3 was synthesized and its structure characterized (single crystal X-ray structural analysis; \(^1\)H, \(^{13}\)C and \(^{29}\)Si NMR studies of solutions in DMSO). 3 was obtained by reaction of cyclohexylmethoxyphenyl(2-pyrrolidinoethyl)silane [C\(_6\)H\(_{11}\)(CH\(_3\)O)Si(C\(_6\)H\(_5\))CH\(_2\)CH\(_2\) NC\(_4\)H\(_8\), 4] with 2,3-dihydroxynaphthalene [C\(_{10}\)H\(_6\)(OH)\(_2\)] in acetonitrile at room temperature (isolated as 3·CH\(_3\)CN, yield 81 \%). The formation of 3 involves two unusual Si-C cleavage reactions (cleavage of Si-C\(_6\)H\(_5\) and Si-C\(_6\)H\(_{11}\) under mild reaction conditions). In addition, 3 was prepared by reaction of 2,3-dihydroxynaphthalene with dimethoxyphenyl(2-pyrrolidinoethyl)silane [C\(_6\)H\(_5\) (CH\(_3\)O)\(_2\)SiCH\(_2\)CH\(_2\)NC\(_4\)H\(_8\) , 5] and trimethoxy( 2-pyrrolidinoethyl)silane [(CH\(_3\)O)\(_3\)SiCH\(_2\)CH\(_2\)NC\(_4\)H\(_8\), 6], respectively (isolated as 3·CH\(_3\)CN; yields 83 and 86\%, respectively). 3·CH\(_3\)CN crystallizes in the space group Pbca with a = 8.877(2) A. b-= 22.823(4) {\"A}, c""" 24.597(4) A, and Z = 8 (R- 0.0592, Rw = 0.0529). The pentacoordinated Si atom of 3·CH\(_3\)CN is surrounded by its ligands in a nearly ideal square-pyramidal fashion (four basal 0 atoms and one apical C atom). The CH3CN molecule does not coordinate to the Si atom.}, subject = {Anorganische Chemie}, language = {de} } @article{WaelbroeckCamusTastenoyetal.1991, author = {Waelbroeck, M. and Camus, J. and Tastenoy, M. and Mutschler, E. and Strohmann, C. and Tacke, Reinhold and Lambrecht, G. and Christophe, J.}, title = {Binding affinities of hexahydro-difenidol and hexahydro-sila-difenidol analogues at four muscarinic receptor subtypes: constitutional and stereochemical aspects}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64128}, year = {1991}, abstract = {Hexahydro-sila-difenidoJ and eight analogues behaved as simple cumpetitive inhibitors of eHJN·methyl·scopoJamine binding to homogenates frorn human neuroblastoma NB-OK 1 cells (M\(_1\) sites), rat heart (M\(_2\) sites), rat pancreas (M\(_3\) sites), and rat striatum 'B' sites (M\(_4\) sites). Pyrrolidino- and hexamethyleneimino analogues showed the same sekctivity profile as the parent compound. Hexahydro-sila-difenidol methiodide and the methiodide of p-fluoro-hexahydro·sila-difenidol had a f{\"u}gher affinity but a lower selectivity than the tertiary amines. Compounds containing a p·methoxy, p-chJoro or p-fluoro substituent in the phenyl ring of hexahydro-sila-difenidol showed a qualitative)y similar selectivity profile as the parent compound (i.e., M\(_1\)= M\(_3\) = M\(_4\) >M\(_2\) ), but up to 16-fold lower affinities. o-Methoxy-hexahydro-sila-difenidol has a lower affinity than hexahydro-sila-difeni.:!o! at the four binding sites. lts selectivity profile (M\(_4\) > M\(_1\), M\(_3\) > M\(_2\) ) was different from hexahydro-sila-difenidol. Replacement of the centrat silicon atom of hexahydro-sila-difenidol, p-fluoro-hexahydro-sila-difenidol and thdr quatemary (N-methylated) analogues by a carbon atom did not change their binding affinities significantly. The iour muscarinic receptors showed a higher affinity for the (R)- than for the (S)-enantiomers of hexahydro-difenidol, p-fluorohexahydro-difenidol and their methiodides. The stereoselectivity varied depending on the receptor subtype and drug considered.}, subject = {Anorganische Chemie}, language = {en} } @article{WaelbroeckCamusTastenoyetal.1991, author = {Waelbroeck, M. and Camus, J. and Tastenoy, M. and Mutschler, E. and Strohmann, C. and Tacke, Reinhold and Lambrecht, G. and Christophe, J.}, title = {Stereoselectivity of (R)- and (S)-hexahydro-difenidol binding to neuroblastoma M\(_1\), cardiac M\(_2\), pancreatic M\(_3\), and striatum M\(_4\) muscarinic receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64135}, year = {1991}, abstract = {(R)-Hexahydro-difenidol has a higher affinity for M\(_1\) receptors in NB-OK 1 cells, pancreas M\(_3\) and striatum M\(_4\) receptors (pKi 7.9 to 8.3) than for cardiac M2 receptors (pKi 7 .0). (8)-Hexahydro-difenidol, by contrast, is nonselective (pKi 5.8 to 6.1). Our goal in the present study was to evaluate the importance ofthe hydrophobic phenyl, and cyclohexyl rings of hexahydro-difenidol for the stereoselectivity and reeeptor selectivity of hexahydro-difenidol binding to the four muscarinic receptors. Our results indieated that replacement of the phenyl ring of hexahydro-difenidol by a cyclohexyl group <~ dicyclidol) and ofthe cyclohexyl ring by a phenyl moiety <~ difenidol) indueed a !arge (4- to 80-fold) decrease in binding affinity for all musearlnie receptors. Difenidol had a signifieant preference for M\(_1\) , M\(_3\) , and M\(_4\) over M\(_2\) receptors; dicyclidol, by eontrast, had a greater affinity for M\(_1\) and M\(_4\) than for M\(_2\) and M\(_3\) receptors. The binding free energy deerease due to replacement ofthe phenyl and the cyelohexyl groups of(R)-hexahydro-difenidol by, respectively, a eyclohexyl and a phenyl moiety was almostadditive in the ease of M\(_4\) (striatum) binding sites. In the ease ofthe cardiac M\(_2\), pancreatic M\(_3\) , or NB-OK 1 M\(_1\) receptors the respective binding free energies were not eompletely additive. These results suggest that the four (R)-hexahydro-difenidol ''binding moieties" (phenyl, cyclohexyl, hydroxy, and protonated amino group) cannot simultaneously form optimal interaetions with the M\(_1\), M\(_2\), and M\(_3\) muscarinic receptors. When eaeh of the hydrophobic groups is modified, the position of the whole molecule, relative to the four subsites, was changed to allow an optimal overall interaction with the musearlnie receptor.}, subject = {Anorganische Chemie}, language = {en} } @article{StrohmannBauereckerCammengaetal.1991, author = {Strohmann, C. and Bauerecker, S. and Cammenga, H. K. and Jones, P. G. and Mutschler, E. and Lambrecht, G. and Tacke, Reinhold}, title = {Enantiomers of the muscarinic antagonist 1-cyclohexyl-1-(4-fluorophenyl)-4-piperidino-1-butanol (p-fluoro-hexahydro-difenidol): synthesis, absolute configuration, and enantiomeric purity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64144}, year = {1991}, abstract = {The enantiomers of the antimuscarinic agent 1-cyclohexyl-1- (4-fluorophenyl)-4-piperidino-1-butanol [(R)- and (S)-p-fluorohexahydro- difenidol] ((R)- and (S)-2a] and their methiodides (R)- 3 and (S)-3 were prepared with high enantiomeric purity. (R)- 2a and (S)-2a (isolated as hydrochlorides) were obtained by catalytic hydrogenation (Pd/C contact) of the corresponding enantiomers of 1-cyclohexyl-1-( 4-fl uorophen yl)-4-piperidino- 2-butyn-1-ol [(R)- and (S)-4]. Reaction of (R)-2a and (S)-2a with rnethyl iodide led to (R)-3 and (S)-3, respectively. The unsaturated precursors (R)- and (S}-4 (enantiorneric purity ~ 99.80 and ~99.94\% e.e.; calorimetric analysis) were prepared by res-sepaolution of rac-4 [available from 4-FC\(_6\)H\(_4\)C(O)C\(_6\)H\(_{11}\) by reaction with LiC ~ CCH\(_2\)NC\(_5\)H\(_{10}\)] using (R)- and (S)-mandelic acid as resolving agents. The absolute configurations of the (R) and (S) enantiomers of 2a, 3, and 4 were determined by an X-ray crystal-structure analysis of (S)-5, the methiodide of (S)-4. (R)- 2a and (R)-3 exhibit a higher affinity for muscarinic M1, M2, M3, and M4 receptors (by up to two orders of magnitude) than their corresponding antipodes (S)-2a and (S)-3, the degree of stereoselectivity depending on the receptor subtype involved. (R)-2a represents a useful tool for rnuscarinic receptor research (affinity profile: M1 ~ M3 ~ M4 > M2).}, subject = {Anorganische Chemie}, language = {en} } @article{TackeMahnerStrohmannetal.1991, author = {Tacke, Reinhold and Mahner, K. and Strohmann, C. and Forth, B. and Mutschler, E. and Friebe, T. and Lambrecht, G.}, title = {Cyclohexyl(4-fluorophenyl)(3-piperidinopropyl)silanol (p-fluoro-hexahydro-sila-difenidol, p-F-HHSiD) and derivatives: synthesis and antimuscarinic properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64162}, year = {1991}, abstract = {Four different syntheses of the potent and selective muscanruc antagonist cyclohexyl( 4- fluorophenyl)(3-piperidinopropyl)silanol ( p-fluoro-hexahydro-sila-difenidol, p-F-HHSiD (2b); isolated as hydrochloride 2b· HCl) are described (starting materials: (CH\(_3\)O)\(_2\)SiCH\(_2\)CH\(_2\)CH\(_2\)Cl and Si(OCH\(_3\))\(_4\) ). In addition, the synthesis of the corresponding carbon analogue p-fluoro-hexahydro-difenidol ( p-F-HHD (2a); isolated as 2a· HCI) and the syntheses of three p-F-HHSiD derivatives (3-5), with a modified cyclic amino group, are reported (3: piperidinojpyrrolidino exchange, isolated as 3· HCI; 4: piperidinoj hexamethylenimino exchange, isolated as 4 · HCl; 5: quaternization of 2b with methyl iodide). The chiral compounds 2a, 2b, 3, 4 and 5 were prepared as racemates. In functional pharmacological studies, 3-5 behaved as simple competitive antagonists at musearlnie Ml receptors in rabbit vas deferens, M2 receptors in guinea-pig atria, and M3 receptors in guinea-pig ileal smooth rnuscle. The pyrrolidino (3) and hexamethylenimino (4) analogues of the parent drug p-F-HHSiD (2b) displayed the highest affinity for Ml and M3 receptors (pA\(_2\) values: 7.0-7.4) but exhibited lower affinity for cardiac M2 receptors (pA\(_2\) : 5.9 and 6.0). Their affinity profile (Ml- M3 > M2) is different from that of p-F-HHSiD (2b) (M3 > Ml > M2), but qualitatively very similar tothat of p-F-HHD (2a). The methiodide 5 exhibited the highest affinity for Ml receptors (pA\(_2\) : 8.5) but lower affinity for M2 and M3 receptors by factors of 5.6 and 3.6, respectively.}, subject = {Anorganische Chemie}, language = {en} } @article{WaelbroeckCamusTastenoyetal.1992, author = {Waelbroeck, M. and Camus, J. and Tastenoy, M. and Mutschler, E. and Strohmann, C. and Tacke, Reinhold and Schjelderup, L. and Aasen, A. and Lambrecht, G. and Christophe, J.}, title = {Stereoselective interaction of procyclidine, hexahydro-difenidol, hexbutinol and oxyphencyclimine, and of related antagonists, with four muscarinic receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64237}, year = {1992}, abstract = {Wc invcstigatcd thc binding properlies of thc (R)- and (Sl-cnantiomcrs of thc muscarinic antagonists trihcxyphcnidyl, procyclidinc, hcxahydro-difcnidol. p-fluoro-hcxahydro-difcnidol. hcxbutinol, p-fluoro-hcxbutinnl. and thcir corrcsponding methiodidcs at muscarinic M\(_1\), M\(_2\)• M\(_3\) and M\(_4\) receptor subtypes. In addition. binding properlies of thc (R)- and (S)-cnantiomcrs of oxyphcncycliminc wcrc studicd. The {R)- cnantiomcrs (cutomcrs} of all the compounds had a grcatcr affinity than the (S)-isomcrs for thc four muscarinic rcccptor subtypcs. Thc binding pattcrns of thc (R)- and (S)-enantiomers wcrc gcncrally different. We did not obscrvc any gcncral corrclation hctwccn thc potcncy of thc high-affinity enantiomer and Lhc affinity ratio (cudismic ratio) of the two cnantiomcrs. Thc rcsuhs arc discusscd in tcrms of a 'four suhsitcs' binding modcl.}, subject = {Anorganische Chemie}, language = {en} } @article{TackeLopezMrasSperlichetal.1993, author = {Tacke, Reinhold and Lopez-Mras, A. and Sperlich, J. and Strohmann, C. and Kuhs, W. F. and Mattern, G. and Sebald, A.}, title = {Neue zwitterionische \(\lambda_5\)-Spirosilicate: Synthesen, Einkristall-R{\"o}ntgenstrukturanalysen und Festk{\"o}rper-NMR-Untersuchungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64251}, year = {1993}, abstract = {The zwitterionic spirocyclic \(\lambda_5\) -Silicates bis(3,4,5,6-tetrabromo- 1,2-benzenediolato(2- ))[2-(pyrrolidinio)ethyl]silicate (5; and its monohydrate 5 · H\(_2\)O) and bis[1,2-benzenediolato(2- )][( dimethylammonio)methyl]silicate (6) were synthesized by various methods including Si-C bond cleavage reactions. The crystal structures of 5, 5 · H\(_2\)O, and 6 were investigated by Xray d{\"u}fraction. Furthermore, 5, 5 · H\(_2\)O, 6, and the related zwitterionic \(\lambda_5\)-spirosilicates 1 · 1/4 CH\(_3\)CN, 2 · CH\(_3\)CN, 3 · CH\(_3\)CN, and 4 were characterized by solid-state NMR spectroscopy (\(^{29}\)Si and \(^{15}\)N CP/MAS). The pentacoordinate silicon atoms of 5, 5 · H\(_2\)O (two crystallographically independent ZWitterions and two crystallographically independent water molecules), and 6 (two crystallographically independent zwitterions) are surrounded by four oxygen atoms and one carbon atom. The coordination polyhedrons around the silicon atoms of 5 and 6 can be described as distorted (5) or nearly ideal (6) trigonal bipyramids, the carbon atoms being in equatorial positions. 5 forms intramolecular and 6 intermolecular (--+ formation of dimeric units) N- H···O hydrogen bonds. The coordination polyhedrons around the two crystallographically independent silicon atoms of 5 · H\(_2\)O can be described as a nearly ideal and slightly distorted square pyramid, respectively, the carbon atoms being in the apical positions. In the crystal lattice of 5 · H\(_2\)O, intermolecular N-H···O and 0-H···O hydrogen bonds between the zwitterions and water molecules are observed. The results obtained by X-ray diffraction and solid-state NMR spectroscopy are consistent for each compound studied.}, subject = {Anorganische Chemie}, language = {de} } @article{WaelbroeckCamusTastenoyetal.1994, author = {Waelbroeck, M. and Camus, J. and Tastenoy, M. and Feifel, R. and Mutschler, E. and Tacke, R. and Strohmann, C. and Rafeiner, K. and Rodrigues de Miranda, J. F. and Lambrecht, G.}, title = {Binding and functional properties of hexocyclium and sila-hexocyclium derivatives to muscarinic receptor suhtypes}, series = {British Journal of Pharmacology}, volume = {112}, journal = {British Journal of Pharmacology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128265}, pages = {505-514}, year = {1994}, abstract = {1 We have compared the binding properties of several hexocyclium and sila-hexocyclium derivatives to muscarinic Ml receptors (in rat brain, human neuroblastoma (NB-OK I) cells and calf superior cervical ganglia), rat heart M2 receptors, rat pancreas M3 receptors and M4 receptors in rat striatum, with their functional antimuscarinic properties in rabbit vas deferens (Ml/M4-like), guinea-pig atria (M2), and guinea-pig ileum (M3) muscarinic receptors. 2 Si la-substitution (C/Si exchange) of hexocyclium (~ sila-hexocyclium) and demethyl-hexocyclium (~demethyl-sila-hexocyclium) did not significantly affect their affinities for muscarinic receptors. By contrast, sila-substitution of demethoxy-hexocyclium increased its affinity 2 to 3 fold for all the muscarinic receptor subtypes studied. 3 The p-fluoro- and p-chloro-derivatives of sila-hexocyclium had lower affinities than the parent compound at the four receptor subtypes, in binding and pharmacological studies. 4 In binding studies, o-methoxy-sila-hexocyclium (Ml = M4 ~ M3 ~ M2) had a much lower affinity than sila-hexocyclium for the four receptor subtypes, and discriminated the receptor subtypes more poorly than sila-hexocyclium (Ml = M3> M4> M2)' This is in marked contrast with the very clear selectivity of demethoxy-sila-hexocyclium for the prejunctional MtlM4-like heteroreceptors in rabbit vas deferens. 5 The tertiary amines demethyl-hexocyclium, demethyl-sila-hexocyclium and demethyl-o-methoxy-silahexocyclium had 10 to 30 fold lower affinities than the corresponding quaternary ammonium derivatives.}, language = {en} }