@article{AstakhovFuchsSoltamovetal.2013, author = {Astakhov, Georgy V. and Fuchs, F. and Soltamov, V. A. and V{\"a}th, S. and Baranov, P. G. and Mokhov, E. N. and Dyakonov, V.}, title = {Silicon carbide light-emitting diode as a prospective room temperature source for single photons}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep01637}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96308}, year = {2013}, abstract = {Generation of single photons has been demonstrated in several systems. However, none of them satisfies all the conditions, e.g. room temperature functionality, telecom wavelength operation, high efficiency, as required for practical applications. Here, we report the fabrication of light-emitting diodes (LEDs) based on intrinsic defects in silicon carbide (SiC). To fabricate our devices we used a standard semiconductor manufacturing technology in combination with high-energy electron irradiation. The room temperature electroluminescence (EL) of our LEDs reveals two strong emission bands in the visible and near infrared (NIR) spectral ranges, associated with two different intrinsic defects. As these defects can potentially be generated at a low or even single defect level, our approach can be used to realize electrically driven single photon source for quantum telecommunication and information processing.}, language = {en} } @article{AstakhovKrausSoltamovetal.2014, author = {Astakhov, Georgy V. and Kraus, Hannes and Soltamov, V. A. and Fuchs, Franziska and Simin, Dimitrij and Sperlich, Andreas and Baranov, P. G. and Dyakonov, Vladimir}, title = {Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide}, doi = {10.1038/srep05303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113025}, year = {2014}, abstract = {Quantum systems can provide outstanding performance in various sensing applications, ranging from bioscience to nanotechnology. Atomic-scale defects in silicon carbide are very attractive in this respect because of the technological advantages of this material and favorable optical and radio frequency spectral ranges to control these defects. We identified several, separately addressable spin-3/2 centers in the same silicon carbide crystal, which are immune to nonaxial strain fluctuations. Some of them are characterized by nearly temperature independent axial crystal fields, making these centers very attractive for vector magnetometry. Contrarily, the zero-field splitting of another center exhibits a giant thermal shift of -1.1 MHz/K at room temperature, which can be used for thermometry applications. We also discuss a synchronized composite clock exploiting spin centers with different thermal response.}, language = {en} } @article{SiminSoltamovPoshakinskiyetal.2016, author = {Simin, D. and Soltamov, V. A. and Poshakinskiy, A. V. and Anisimov, A. N. and Babunts, R. A. and Tolmachev, D. O. and Mokhov, E. N. and Trupke, M. and Tarasenko, S. A. and Sperlich, A. and Baranov, P. G. and Dyakonov, V. and Astakhov, G. V.}, title = {All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide}, series = {Physical Review X}, volume = {6}, journal = {Physical Review X}, doi = {10.1103/PhysRevX.6.031014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147682}, pages = {031014}, year = {2016}, abstract = {We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-\(^{28}\)SiC) and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100  nT/√Hz within a volume of 3×10\(^{-7}\)mm\(^3\) at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3  mm\(^3\), the projection noise limit is below 100  fT/√Hz.}, language = {en} } @article{AnisimovSiminSoltamovetal.2016, author = {Anisimov, A. N. and Simin, D. and Soltamov, V. A. and Lebedev, S. P. and Baranov, P. G. and Astakhov, G. V. and Dyakonov, V.}, title = {Optical thermometry based on level anticrossing in silicon carbide}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {33301}, doi = {10.1038/srep33301}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147809}, year = {2016}, abstract = {We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz\(^{1/2}\) for a detection volume of approximately 10\(^{-6}\) mm\(^3\). In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.}, language = {en} }