@article{SeherNickelMuelleretal.2011, author = {Seher, Axel and Nickel, Joachim and Mueller, Thomas D. and Kneitz, Susanne and Gebhardt, Susanne and Meyer ter Vehn, Tobias and Schlunck, Guenther and Sebald, Walter}, title = {Gene expression profiling of connective tissue growth factor (CTGF) stimulated primary human tenon fibroblasts reveals an inflammatory and wound healing response in vitro}, series = {Molecular Vision}, volume = {17}, journal = {Molecular Vision}, number = {08. Okt}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140189}, pages = {53-62}, year = {2011}, abstract = {Purpose: The biologic relevance of human connective tissue growth factor (hCTGF) for primary human tenon fibroblasts (HTFs) was investigated by RNA expression profiling using affymetrix (TM) oligonucleotide array technology to identify genes that are regulated by hCTGF. Methods: Recombinant hCTGF was expressed in HEK293T cells and purified by affinity and gel chromatography. Specificity and biologic activity of hCTGF was confirmed by biosensor interaction analysis and proliferation assays. For RNA expression profiling HTFs were stimulated with hCTGF for 48h and analyzed using affymetrix (TM) oligonucleotide array technology. Results were validated by real time RT-PCR. Results: hCTGF induces various groups of genes responsible for a wound healing and inflammatory response in HTFs. A new subset of CTGF inducible inflammatory genes was discovered (e.g., chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-X-C motif] ligand 6 [CXCL6], interleukin 6 [IL6], and interleukin 8 [IL8]). We also identified genes that can transmit the known biologic functions initiated by CTGF such as proliferation and extracellular matrix remodelling. Of special interest is a group of genes, e.g., osteoglycin (OGN) and osteomodulin (OMD), which are known to play a key role in osteoblast biology. Conclusions: This study specifies the important role of hCTGF for primary tenon fibroblast function. The RNA expression profile yields new insights into the relevance of hCTGF in influencing biologic processes like wound healing, inflammation, proliferation, and extracellular matrix remodelling in vitro via transcriptional regulation of specific genes. The results suggest that CTGF potentially acts as a modulating factor in inflammatory and wound healing response in fibroblasts of the human eye.}, language = {en} } @article{VottelerCarvajalBerrioPudlasetal.2012, author = {Votteler, Miriam and Carvajal Berrio, Daniel A. and Pudlas, Marieke and Walles, Heike and Schenke-Layland, Katja}, title = {Non-contact, Label-free Monitoring of Cells and Extracellular Matrix using Raman Spectroscopy}, series = {Journal of Visual Expression}, volume = {63}, journal = {Journal of Visual Expression}, number = {e3977}, doi = {10.3791/3977}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124569}, year = {2012}, abstract = {Non-destructive, non-contact and label-free technologies to monitor cell and tissue cultures are needed in the field of biomedical research.1-5 However, currently available routine methods require processing steps and alter sample integrity. Raman spectroscopy is a fast method that enables the measurement of biological samples without the need for further processing steps. This laser-based technology detects the inelastic scattering of monochromatic light.6 As every chemical vibration is assigned to a specific Raman band (wavenumber in cm-1), each biological sample features a typical spectral pattern due to their inherent biochemical composition.7-9 Within Raman spectra, the peak intensities correlate with the amount of the present molecular bonds.1 Similarities and differences of the spectral data sets can be detected by employing a multivariate analysis (e.g. principal component analysis (PCA)).10 Here, we perform Raman spectroscopy of living cells and native tissues. Cells are either seeded on glass bottom dishes or kept in suspension under normal cell culture conditions (37 °C, 5\% CO2) before measurement. Native tissues are dissected and stored in phosphate buffered saline (PBS) at 4 °C prior measurements. Depending on our experimental set up, we then either focused on the cell nucleus or extracellular matrix (ECM) proteins such as elastin and collagen. For all studies, a minimum of 30 cells or 30 random points of interest within the ECM are measured. Data processing steps included background subtraction and normalization.}, language = {en} } @article{JakobEbertRudertetal.2012, author = {Jakob, Franz and Ebert, Regina and Rudert, Maximilian and N{\"o}th, Ulrich and Walles, Heike and Docheva, Denitsa and Schieker, Matthias and Meinel, Lorenz and Groll, J{\"u}rgen}, title = {In situ guided tissue regeneration in musculoskeletal diseases and aging}, series = {Cell and Tissue Research}, volume = {347}, journal = {Cell and Tissue Research}, number = {3}, doi = {10.1007/s00441-011-1237-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124738}, pages = {725-735}, year = {2012}, abstract = {In situ guided tissue regeneration, also addressed as in situ tissue engineering or endogenous regeneration, has a great potential for population-wide "minimal invasive" applications. During the last two decades, tissue engineering has been developed with remarkable in vitro and preclinical success but still the number of applications in clinical routine is extremely small. Moreover, the vision of population-wide applications of ex vivo tissue engineered constructs based on cells, growth and differentiation factors and scaffolds, must probably be deemed unrealistic for economic and regulation-related issues. Hence, the progress made in this respect will be mostly applicable to a fraction of post-traumatic or post-surgery situations such as big tissue defects due to tumor manifestation. Minimally invasive procedures would probably qualify for a broader application and ideally would only require off the shelf standardized products without cells. Such products should mimic the microenvironment of regenerating tissues and make use of the endogenous tissue regeneration capacities. Functionally, the chemotaxis of regenerative cells, their amplification as a transient amplifying pool and their concerted differentiation and remodeling should be addressed. This is especially important because the main target populations for such applications are the elderly and diseased. The quality of regenerative cells is impaired in such organisms and high levels of inhibitors also interfere with regeneration and healing. In metabolic bone diseases like osteoporosis, it is already known that antagonists for inhibitors such as activin and sclerostin enhance bone formation. Implementing such strategies into applications for in situ guided tissue regeneration should greatly enhance the efficacy of tailored procedures in the future.}, language = {en} } @article{RackwitzEdenReppenhagenetal.2012, author = {Rackwitz, Lars and Eden, Lars and Reppenhagen, Stephan and Reichert, Johannes C. and Jakob, Franz and Walles, Heike and Pullig, Oliver and Tuan, Rocky S. and Rudert, Maximilian and N{\"o}th, Ulrich}, title = {Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head}, series = {Stem Cell Research \& Therapy}, volume = {3}, journal = {Stem Cell Research \& Therapy}, number = {7}, doi = {10.1186/scrt98}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135413}, year = {2012}, abstract = {Avascular necrosis (AVN) of the femoral head is a debilitating disease of multifactorial genesis, predominately affects young patients, and often leads to the development of secondary osteoarthritis. The evolving field of regenerative medicine offers promising treatment strategies using cells, biomaterial scaffolds, and bioactive factors, which might improve clinical outcome. Early stages of AVN with preserved structural integrity of the subchondral plate are accessible to retrograde surgical procedures, such as core decompression to reduce the intraosseous pressure and to induce bone remodeling. The additive application of concentrated bone marrow aspirates, ex vivo expanded mesenchymal stem cells, and osteogenic or angiogenic growth factors (or both) holds great potential to improve bone regeneration. In contrast, advanced stages of AVN with collapsed subchondral bone require an osteochondral reconstruction to preserve the physiological joint function. Analogously to strategies for osteochondral reconstruction in the knee, anterograde surgical techniques, such as osteochondral transplantation (mosaicplasty), matrix-based autologous chondrocyte implantation, or the use of acellular scaffolds alone, might preserve joint function and reduce the need for hip replacement. This review summarizes recent experimental accomplishments and initial clinical findings in the field of regenerative medicine which apply cells, growth factors, and matrices to address the clinical problem of AVN.}, language = {en} } @article{DegenkolbeKoenigZimmeretal.2013, author = {Degenkolbe, Elisa and K{\"o}nig, Jana and Zimmer, Julia and Walther, Maria and Reißner, Carsten and Nickel, Joachim and Pl{\"o}ger, Frank and Raspopovic, Jelena and Sharpe, James and Dathe, Katharina and Hecht, Jacqueline T. and Mundlos, Stefan and Doelken, Sandra C. and Seemann, Petra}, title = {A GDF5 Point Mutation Strikes Twice - Causing BDA1 and SYNS2}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {10}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003846}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127556}, pages = {e1003846}, year = {2013}, abstract = {Growth and Differentiation Factor 5 (GDF5) is a secreted growth factor that belongs to the Bone Morphogenetic Protein (BMP) family and plays a pivotal role during limb development. GDF5 is a susceptibility gene for osteoarthritis (OA) and mutations in GDF5 are associated with a wide variety of skeletal malformations ranging from complex syndromes such as acromesomelic chondrodysplasias to isolated forms of brachydactylies or multiple synostoses syndrome 2 (SYNS2). Here, we report on a family with an autosomal dominant inherited combination of SYNS2 and additional brachydactyly type A1 (BDA1) caused by a single point mutation in GDF5 (p.W414R). Functional studies, including chondrogenesis assays with primary mesenchymal cells, luciferase reporter gene assays and Surface Plasmon Resonance analysis, of the GDF5 W-414R variant in comparison to other GDF5 mutations associated with isolated BDA1 (p.R399C) or SYNS2 (p.E491K) revealed a dual pathomechanism characterized by a gain-and loss-of-function at the same time. On the one hand insensitivity to the main GDF5 antagonist NOGGIN (NOG) leads to a GDF5 gain of function and subsequent SYNS2 phenotype. Whereas on the other hand, a reduced signaling activity, specifically via the BMP receptor type IA (BMPR1A), is likely responsible for the BDA1 phenotype. These results demonstrate that one mutation in the overlapping interface of antagonist and receptor binding site in GDF5 can lead to a GDF5 variant with pathophysiological relevance for both, BDA1 and SYNS2 development. Consequently, our study assembles another part of the molecular puzzle of how loss and gain of function mutations in GDF5 affect bone development in hands and feet resulting in specific types of brachydactyly and SYNS2. These novel insights into the biology of GDF5 might also provide further clues on the pathophysiology of OA.}, language = {en} } @article{MollReboredoSchwarzetal.2013, author = {Moll, Corinna and Reboredo, Jenny and Schwarz, Thomas and Appelt, Antje and Sch{\"u}rlein, Sebastian and Walles, Heike and Nietzer, Sarah}, title = {Tissue Engineering of a Human 3D in vitro Tumor Test System}, series = {Journal of Visualized Experiments}, volume = {78}, journal = {Journal of Visualized Experiments}, number = {e50460}, doi = {10.3791/50460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132277}, year = {2013}, abstract = {Cancer is one of the leading causes of death worldwide. Current therapeutic strategies are predominantly developed in 2D culture systems, which inadequately reflect physiological conditions in vivo. Biological 3D matrices provide cells an environment in which cells can self-organize, allowing the study of tissue organization and cell differentiation. Such scaffolds can be seeded with a mixture of different cell types to study direct 3D cell-cell-interactions. To mimic the 3D complexity of cancer tumors, our group has developed a 3D in vitro tumor test system. Our 3D tissue test system models the in vivo situation of malignant peripheral nerve sheath tumors (MPNSTs), which we established with our decellularized porcine jejunal segment derived biological vascularized scaffold (BioVaSc). In our model, we reseeded a modified BioVaSc matrix with primary fibroblasts, microvascular endothelial cells (mvECs) and the S462 tumor cell line For static culture, the vascular structure of the BioVaSc is removed and the remaining scaffold is cut open on one side (Small Intestinal Submucosa SIS-Muc). The resulting matrix is then fixed between two metal rings (cell crowns). Another option is to culture the cell-seeded SIS-Muc in a flow bioreactor system that exposes the cells to shear stress. Here, the bioreactor is connected to a peristaltic pump in a self-constructed incubator. A computer regulates the arterial oxygen and nutrient supply via parameters such as blood pressure, temperature, and flow rate. This setup allows for a dynamic culture with either pressure-regulated pulsatile or constant flow. In this study, we could successfully establish both a static and dynamic 3D culture system for MPNSTs. The ability to model cancer tumors in a more natural 3D environment will enable the discovery, testing, and validation of future pharmaceuticals in a human-like model.}, language = {en} } @article{BingShiTanKressCastroetal.2013, author = {Bing-Shi Tan, Ariel and Kress, Sebastian and Castro, Leticia and Sheppard, Allan and Raghunath, Michael}, title = {Cellular re- and de-programming by microenvironmental memory: why short TGF-β1 pulses can have long effects}, series = {Fibrogenesis Tissue Repair}, volume = {6}, journal = {Fibrogenesis Tissue Repair}, number = {12}, doi = {10.1186/1755-1536-6-12}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131898}, year = {2013}, abstract = {Background Fibrosis poses a substantial setback in regenerative medicine. Histopathologically, fibrosis is an excessive accumulation of collagen affected by myofibroblasts and this can occur in any tissue that is exposed to chronic injury or insult. Transforming growth factor (TGF)-β1, a crucial mediator of fibrosis, drives differentiation of fibroblasts into myofibroblasts. These cells exhibit α-smooth muscle actin (α-SMA) and synthesize high amounts of collagen I, the major extracellular matrix (ECM) component of fibrosis. While hormones stimulate cells in a pulsatile manner, little is known about cellular response kinetics upon growth factor impact. We therefore studied the effects of short TGF-β1 pulses in terms of the induction and maintenance of the myofibroblast phenotype. Results Twenty-four hours after a single 30 min TGF-β1 pulse, transcription of fibrogenic genes was upregulated, but subsided 7 days later. In parallel, collagen I secretion rate and α-SMA presence were elevated for 7 days. A second pulse 24 h later extended the duration of effects to 14 days. We could not establish epigenetic changes on fibrogenic target genes to explain the long-lasting effects. However, ECM deposited under singly pulsed TGF-β1 was able to induce myofibroblast features in previously untreated fibroblasts. Dependent on the age of the ECM (1 day versus 7 days' formation time), this property was diminished. Vice versa, myofibroblasts were cultured on fibroblast ECM and cells observed to express reduced (in comparison with myofibroblasts) levels of collagen I. Conclusions We demonstrated that short TGF-β1 pulses can exert long-lasting effects on fibroblasts by changing their microenvironment, thus leaving an imprint and creating a reciprocal feed-back loop. Therefore, the ECM might act as mid-term memory for pathobiochemical events. We would expect this microenvironmental memory to be dependent on matrix turnover and, as such, to be erasable. Our findings contribute to the current understanding of fibroblast induction and maintenance, and have bearing on the development of antifibrotic drugs.}, language = {en} } @article{DiestelReschMeinhardtetal.2013, author = {Diestel, Uschi and Resch, Marcus and Meinhardt, Kathrin and Weiler, Sigrid and Hellmann, Tina V. and Mueller, Thomas D. and Nickel, Joachim and Eichler, Jutta and Muller, Yves A.}, title = {Identification of a Novel TGF-beta-Binding Site in the Zona Pellucida C-terminal (ZP-C) Domain of TGF-\(\beta\)-Receptor-3 (TGFR-3)}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0067214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130904}, pages = {e67214}, year = {2013}, abstract = {The zona pellucida (ZP) domain is present in extracellular proteins such as the zona pellucida proteins and tectorins and participates in the formation of polymeric protein networks. However, the ZP domain also occurs in the cytokine signaling co-receptor transforming growth factor beta (TGF-\(\beta\)) receptor type 3 (TGFR-3, also known as betaglycan) where it contributes to cytokine ligand recognition. Currently it is unclear how the ZP domain architecture enables this dual functionality. Here, we identify a novel major TGF-beta-binding site in the FG loop of the C-terminal subdomain of the murine TGFR-3 ZP domain (ZP-C) using protein crystallography, limited proteolysis experiments, surface plasmon resonance measurements and synthetic peptides. In the murine 2.7 angstrom crystal structure that we are presenting here, the FG-loop is disordered, however, well-ordered in a recently reported homologous rat ZP-C structure. Surprisingly, the adjacent external hydrophobic patch (EHP) segment is registered differently in the rat and murine structures suggesting that this segment only loosely associates with the remaining ZP-C fold. Such a flexible and temporarily-modulated association of the EHP segment with the ZP domain has been proposed to control the polymerization of ZP domain-containing proteins. Our findings suggest that this flexibility also extends to the ZP domain of TGFR-3 and might facilitate co-receptor ligand interaction and presentation via the adjacent FG-loop. This hints that a similar C-terminal region of the ZP domain architecture possibly regulates both the polymerization of extracellular matrix proteins and cytokine ligand recognition of TGFR-3.}, language = {en} } @article{HetzAcikgoezMolletal.2014, author = {Hetz, Susan and Acikgoez, Ali and Moll, Corinna and Jahnke, Heinz-Georg and Robitzki, Andrea A. and Metzger, Roman and Metzger, Marco}, title = {Age-related gene expression analysis in enteric ganglia of human colon after laser microdissection}, series = {Frontiers in Aging Neuroscience}, volume = {6}, journal = {Frontiers in Aging Neuroscience}, issn = {1663-4365}, doi = {10.3389/fnagi.2014.00276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118308}, pages = {276}, year = {2014}, abstract = {The enteric nervous system (ENS) poses the intrinsic innervation of the gastrointestinal tract and plays a critical role for all stages of postnatal life. There is increasing scientific and clinical interest in acquired or age-related gastrointestinal dysfunctions that can be manifested in diseases such as gut constipation or fecal incontinence. In this study, we sought to analyze age-dependent changes in the gene expression profile of the human ENS, particularly in the myenteric plexus. Therefore, we used the laser microdissection technique which has been proven as a feasible tool to analyze distinct cell populations within heterogeneously composed tissues. Full biopsy gut samples were prepared from children (4-12 months), middle aged (48-58 years) and aged donors (70-95 years). Cryosections were histologically stained with H\&E, the ganglia of the myenteric plexus identified and RNA isolated using laser microdissection technique. Quantitative PCR was performed for selected neural genes, neurotransmitters and receptors. Data were confirmed on protein level using NADPH-diaphorase staining and immunohistochemistry. As result, we demonstrate age-associated alterations in site-specific gene expression pattern of the ENS. Thus, in the adult and aged distal parts of the colon a marked decrease in relative gene expression of neural key genes like NGFR, RET, NOS1 and a concurrent increase of CHAT were observed. Further, we detected notable regional differences of RET, CHAT, TH, and S100B comparing gene expression in aged proximal and distal colon. Interestingly, markers indicating cellular senescence or oxidative stress (SNCA, CASP3, CAT, SOD2, and TERT) were largely unchanged within the ENS. For the first time, our study also describes the age-dependent expression pattern of all major sodium channels within the ENS. Our results are in line with previous studies showing spatio-temporal differences within the mammalian ENS.}, language = {en} } @article{HetzAcikgoezVossetal.2014, author = {Hetz, Susan and Acikgoez, Ali and Voss, Ulrike and Nieber, Karen and Holland, Heidrun and Hegewald, Cindy and Till, Holger and Metzger, Roman and Metzger, Marco}, title = {In Vivo Transplantation of Neurosphere-Like Bodies Derived from the Human Postnatal and Adult Enteric Nervous System: A Pilot Study}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {4}, doi = {10.1371/journal.pone.0093605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116793}, pages = {e93605}, year = {2014}, abstract = {Recent advances in the in vitro characterization of human adult enteric neural progenitor cells have opened new possibilities for cell-based therapies in gastrointestinal motility disorders. However, whether these cells are able to integrate within an in vivo gut environment is still unclear. In this study, we transplanted neural progenitor-containing neurosphere-like bodies (NLBs) in a mouse model of hypoganglionosis and analyzed cellular integration of NLB-derived cell types and functional improvement. NLBs were propagated from postnatal and adult human gut tissues. Cells were characterized by immunohistochemistry, quantitative PCR and subtelomere fluorescence in situ hybridization (FISH). For in vivo evaluation, the plexus of murine colon was damaged by the application of cationic surfactant benzalkonium chloride which was followed by the transplantation of NLBs in a fibrin matrix. After 4 weeks, grafted human cells were visualized by combined in situ hybridization (Alu) and immunohistochemistry (PGP9.5, GFAP, SMA). In addition, we determined nitric oxide synthase (NOS)-positive neurons and measured hypertrophic effects in the ENS and musculature. Contractility of treated guts was assessed in organ bath after electrical field stimulation. NLBs could be reproducibly generated without any signs of chromosomal alterations using subtelomere FISH. NLB-derived cells integrated within the host tissue and showed expected differentiated phenotypes i.e. enteric neurons, glia and smooth muscle-like cells following in vivo transplantation. Our data suggest biological effects of the transplanted NLB cells on tissue contractility, although robust statistical results could not be obtained due to the small sample size. Further, it is unclear, which of the NLB cell types including neural progenitors have direct restoring effects or, alternatively may act via 'bystander' mechanisms in vivo. Our findings provide further evidence that NLB transplantation can be considered as feasible tool to improve ENS function in a variety of gastrointestinal disorders.}, language = {en} } @article{AlepeeBahinskiDaneshianetal.2014, author = {Alepee, Natalie and Bahinski, Anthony and Daneshian, Mardas and De Weyer, Bart and Fritsche, Ellen and Goldberg, Alan and Hansmann, Jan and Hartung, Thomas and Haycock, John and Hogberg, Helena T. and Hoelting, Lisa and Kelm, Jens M. and Kadereit, Suzanne and McVey, Emily and Landsiedel, Robert and Leist, Marcel and L{\"u}bberstedt, Marc and Noor, Fozia and Pellevoisin, Christian and Petersohn, Dirk and Pfannenbecker, Uwe and Reisinger, Kerstin and Ramirez, Tzutzuy and Rothen-Rutishauser, Barbara and Sch{\"a}fer-Korting, Monika and Zeilinger, Katrin and Zurich, Marie-Gabriele}, title = {State-of-the-Art of 3D Cultures (Organs-on-a-Chip) in Safety Testing and Pathophysiology}, series = {ALTEX - Alternatives to Animal Experimentation}, volume = {31}, journal = {ALTEX - Alternatives to Animal Experimentation}, number = {4}, doi = {2014; http://dx.doi.org/10.14573/altex1406111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117826}, pages = {441-477}, year = {2014}, abstract = {Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs liver, lung, skin, brain are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.}, language = {en} } @article{FernandezRobredoSanchoJohnenetal.2014, author = {Fernandez-Robredo, P. and Sancho, A. and Johnen, S. and Recalde, S. and Gama, N. and Thumann, G. and Groll, J. and Garcia-Layana, A.}, title = {Current Treatment Limitations in Age-Related Macular Degeneration and Future Approaches Based on Cell Therapy and Tissue Engineering}, series = {Journal of Ophtamology}, journal = {Journal of Ophtamology}, number = {510285}, issn = {2090-0058}, doi = {10.1155/2014/510285}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118004}, year = {2014}, abstract = {Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. With an ageing population, it is anticipated that the number of AMD cases will increase dramatically, making a solution to this debilitating disease an urgent requirement for the socioeconomic future of the European Union and worldwide. The present paper reviews the limitations of the current therapies as well as the socioeconomic impact of the AMD. There is currently no cure available for AMD, and even palliative treatments are rare. Treatment options show several side effects, are of high cost, and only treat the consequence, not the cause of the pathology. For that reason, many options involving cell therapy mainly based on retinal and iris pigment epithelium cells as well as stem cells are being tested. Moreover, tissue engineering strategies to design and manufacture scaffolds to mimic Bruch's membrane are very diverse and under investigation. Both alternative therapies are aimed to prevent and/or cure AMD and are reviewed herein.}, language = {en} } @phdthesis{Berninger2014, author = {Berninger, Ann-Kathrin}, title = {In-vitro-Untersuchungen zur Biokompatibilit{\"a}t modifizierter Silikonoberfl{\"a}chen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113911}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Hintergrund Jede Implantation alloplastischer Materialien f{\"u}hrt durch Aktivierung der k{\"o}rpereigenen Immunabwehr zu einer Fremdk{\"o}rperreaktion. An der Synthese der Extrazellul{\"a}rmatrix und der entstehenden Kollagenkapsel sind insbesondere Makrophagen und Fibroblasten beteiligt. Diese Reaktionen k{\"o}nnen die Material-Funktionsf{\"a}higkeit abschw{\"a}chen, aufheben oder zu deren operativer Entfernung zwingen. Fragestellung und Ziele Spinnenseide ist ein Material mit hoher Biokompatibilit{\"a}t. Nachdem es gelungen ist, Spinnenseide rekombinant herzustellen, soll untersucht werden, wie sich die Vertr{\"a}glichkeit alloplastischer Materialien durch eine Beschichtung mit biotechnologisch hergestellter Spinnenseide beeinflussen l{\"a}sst. Eine weitere M{\"o}glichkeit ist der TGF-β-Synthese-Inhibitor Halofuginon, der ebenfalls hinsichtlich seiner Potenz, die Ausbildung einer Fibrosekapsel zu vermindern, untersucht werden soll. Methodik Anhand von in-vitro-Untersuchungen wurden die bei der Fremdk{\"o}rperreaktion beteiligten Zelltypen auf ihr Proliferationsverhalten und die Expression unterschiedlicher Genprodukte hinsichtlich bestehender Unterschiede zwischen den jeweiligen Oberfl{\"a}chenbeschichtungen untersucht. Es wurden immunhistochemische F{\"a}rbungen zum Nachweis spezifischer Oberfl{\"a}chenantigene, Bestimmungen von ATP- und DNA-Gehalt als Maß f{\"u}r die Zellzahl, sowie molekulargenetische Untersuchungen hinsichtlich der Expression relevanter Markergene (rtPCR) durchgef{\"u}hrt. Ergebnisse Eine Beschichtung mit rekombinanter Spinnseide f{\"u}hrt - im Vergleich zu reinen Silikonimplantaten - zu einer verz{\"o}gerten und reduzierten Immunreaktion. Die EZM-Synthese und die damit verbundene fremdk{\"o}rperassoziierte Fibrose werden vermindert und so die Biokompatibilit{\"a}t alloplastischer Materialien gesteigert.}, subject = {Fibrose}, language = {de} } @article{MarkensteinAppeltMenzelMetzgeretal.2014, author = {Markenstein, Lisa and Appelt-Menzel, Antje and Metzger, Marco and Wenz, Gerhard}, title = {Conjugates of methylated cyclodextrin derivatives and hydroxyethyl starch (HES): Synthesis, cytotoxicity and inclusion of anaesthetic actives}, series = {Beilstein Journal of Organic Chemistry}, volume = {10}, journal = {Beilstein Journal of Organic Chemistry}, issn = {1860-5397}, doi = {10.3762/bjoc.10.325}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114280}, pages = {3087 - 3096}, year = {2014}, abstract = {The mono-6-deoxy-6-azides of 2,6-di-O-methyl-beta-cyclodextrin (DIMEB) and randomly methylated-beta-cyclodextrin (RAMEB) were conjugated to propargylated hydroxyethyl starch (HES) by Cu+-catalysed [2 + 3] cycloaddition. The resulting water soluble polymers showed lower critical solution temperatures (LCST) at 52.5 degrees C (DIMEB-HES) and 84.5 degrees C (RAMEB-HES), respectively. LCST phase separations could be completely avoided by the introduction of a small amount of carboxylate groups at the HES backbone. The methylated CDs conjugated to the HES backbone exhibited significantly lower cytotoxicities than the corresponding monomeric CD derivatives. Since the binding potentials of these CD conjugates were very high, they are promising candidates for new oral dosage forms of anaesthetic actives.}, language = {en} } @article{KlammertMuellerHellmannetal.2015, author = {Klammert, Uwe and M{\"u}ller, Thomas D. and Hellmann, Tina V. and Wuerzler, Kristian K. and Kotzsch, Alexander and Schliermann, Anna and Schmitz, Werner and Kuebler, Alexander C. and Sebald, Walter and Nickel, Joachim}, title = {GDF-5 can act as a context-dependent BMP-2 antagonist}, series = {BMC Biology}, volume = {13}, journal = {BMC Biology}, number = {77}, doi = {10.1186/s12915-015-0183-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125550}, year = {2015}, abstract = {Background Bone morphogenetic protein (BMP)-2 and growth and differentiation factor (GDF)-5 are two related transforming growth factor (TGF)-β family members with important functions in embryonic development and tissue homeostasis. BMP-2 is best known for its osteoinductive properties whereas GDF-5—as evident from its alternative name, cartilage derived morphogenetic protein 1—plays an important role in the formation of cartilage. In spite of these differences both factors signal by binding to the same subset of BMP receptors, raising the question how these different functionalities are generated. The largest difference in receptor binding is observed in the interaction with the type I receptor BMPR-IA. GDF-5, in contrast to BMP-2, shows preferential binding to the isoform BMPR-IB, which is abrogated by a single amino acid (A57R) substitution. The resulting variant, GDF-5 R57A, represents a "BMP-2 mimic" with respect to BMP receptor binding. In this study we thus wanted to analyze whether the two growth factors can induce distinct signals via an identically composed receptor. Results Unexpectedly and dependent on the cellular context, GDF-5 R57A showed clear differences in its activity compared to BMP-2. In ATDC-5 cells, both ligands induced alkaline phosphatase (ALP) expression with similar potency. But in C2C12 cells, the BMP-2 mimic GDF-5 R57A (and also wild-type GDF-5) clearly antagonized BMP-2-mediated ALP expression, despite signaling in both cell lines occurring solely via BMPR-IA. The BMP-2- antagonizing properties of GDF-5 and GDF-5 R57A could also be observed in vivo when implanting BMP-2 and either one of the two GDF-5 ligands simultaneously at heterotopic sites. Conclusions Although comparison of the crystal structures of the GDF-5 R57A:BMPR-IAEC- and BMP-2:BMPR-IAEC complex revealed small ligand-specific differences, these cannot account for the different signaling characteristics because the complexes seem identical in both differently reacting cell lines. We thus predict an additional component, most likely a not yet identified GDF-5-specific co-receptor, which alters the output of the signaling complexes. Hence the presence or absence of this component then switches GDF-5′s signaling capabilities to act either similar to BMP-2 or as a BMP-2 antagonist. These findings might shed new light on the role of GDF-5, e.g., in cartilage maintenance and/or limb development in that it might act as an inhibitor of signaling events initiated by other BMPs.}, language = {en} } @article{RamachandranSchirmerMuenstetal.2015, author = {Ramachandran, Sarada Devi and Schirmer, Katharina and M{\"u}nst, Bernhard and Heinz, Stefan and Ghafoory, Shahrouz and W{\"o}lfl, Stefan and Simon-Keller, Katja and Marx, Alexander and {\O}ie, Cristina Ionica and Ebert, Matthias P. and Walles, Heike and Braspenning, Joris and Breitkopf-Heinlein, Katja}, title = {In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0139345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139552}, pages = {e0139345}, year = {2015}, abstract = {In this study we used differentiated adult human upcyte (R) cells for the in vitro generation of liver organoids. Upcyte (R) cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte (R) process). Proliferating upcyte (R) cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte (R) cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel\(^{TM}\), they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions.}, language = {en} } @article{HindererShenRinguetteetal.2015, author = {Hinderer, Svenja and Shen, Nian and Ringuette, L{\´e}a-Jeanne and Hansmann, Jan and Reinhardt, Dieter P and Brucker, Sara Y and Davis, Elaine C and Schenke-Layland, Katja}, title = {In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold}, series = {Biomedical Materials}, volume = {10}, journal = {Biomedical Materials}, number = {3}, doi = {10.1088/1748-6041/10/3/034102}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254074}, year = {2015}, abstract = {Elastic fibers are essential for the proper function of organs including cardiovascular tissues such as heart valves and blood vessels. Although (tropo)elastin production in a tissue-engineered construct has previously been described, the assembly to functional elastic fibers in vitro using human cells has been highly challenging. In the present study, we seeded primary isolated human vascular smooth muscle cells (VSMCs) onto 3D electrospun scaffolds and exposed them to defined laminar shear stress using a customized bioreactor system. Increased elastin expression followed by elastin deposition onto the electrospun scaffolds, as well as on newly formed fibers, was observed after six days. Most interestingly, we identified the successful deposition of elastogenesis-associated proteins, including fibrillin-1 and -2, fibulin-4 and -5, fibronectin, elastin microfibril interface located protein 1 (EMILIN-1) and lysyl oxidase (LOX) within our engineered constructs. Ultrastructural analyses revealed a developing extracellular matrix (ECM) similar to native human fetal tissue, which is composed of collagens, microfibrils and elastin. To conclude, the combination of a novel dynamic flow bioreactor and an electrospun hybrid polymer scaffold allowed the production and assembly of an elastic fiber-containing ECM.}, language = {en} } @article{GordonDaneshianBouwstraetal.2015, author = {Gordon, Sarah and Daneshian, Mardas and Bouwstra, Joke and Caloni, Francesca and Constant, Samuel and Davies, Donna E. and Dandekar, Gudrun and Guzman, Carlos A. and Fabian, Eric and Haltner, Eleonore and Hartung, Thomas and Hasiwa, Nina and Hayden, Patrick and Kandarova, Helena and Khare, Sangeeta and Krug, Harald F. and Kneuer, Carsten and Leist, Marcel and Lian, Guoping and Marx, Uwe and Metzger, Marco and Ott, Katharina and Prieto, Pilar and Roberts, Michael S. and Roggen, Erwin L. and Tralau, Tewes and van den Braak, Claudia and Walles, Heike and Lehr, Claus-Michael}, title = {Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology}, series = {ALTEX: Alternatives to Animal Experimentation}, volume = {32}, journal = {ALTEX: Alternatives to Animal Experimentation}, number = {4}, doi = {10.14573/altex.1510051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144275}, pages = {327-378}, year = {2015}, abstract = {Models of the outer epithelia of the human body namely the skin, the intestine and the lung have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields, ranging from the utilization of ex vivo tissue to reconstructed in vitro models, and further to chip-based technologies, synthetic membrane systems and, of increasing current interest, in silico modeling approaches. An international group of experts in the field of epithelial barriers was convened from academia, industry and regulatory bodies to present both the current state of the art of non-animal models of the skin, intestinal and pulmonary barriers in their various fields of application, and to discuss research-based, industry-driven and regulatory-relevant future directions for both the development of new models and the refinement of existing test methods. Issues of model relevance and preference, validation and standardization, acceptance, and the need for simplicity versus complexity were focal themes of the discussions. The outcomes of workshop presentations and discussions, in relation to both current status and future directions in the utilization and development of epithelial barrier models, are presented by the attending experts in the current report.}, language = {en} } @article{SchuetzeRoehringVorlovaetal.2015, author = {Sch{\"u}tze, Friedrich and R{\"o}hring, Florian and Vorlov{\´a}, Sandra and G{\"a}tzner, Sabine and Kuhn, Anja and Erg{\"u}n, S{\"u}leyman and Henke, Erik}, title = {Inhibition of lysyl oxidases improves drug diffusion and increases efficacy of cytotoxic treatment in 3D tumor models}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {17576}, doi = {10.1038/srep17576}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145109}, year = {2015}, abstract = {Tumors are characterized by a rigid, highly cross-linked extracellular matrix (ECM), which impedes homogeneous drug distribution and potentially protects malignant cells from exposure to therapeutics. Lysyl oxidases are major contributors to tissue stiffness and the elevated expression of these enzymes observed in most cancers might influence drug distribution and efficacy. We examined the effect of lysyl oxidases on drug distribution and efficacy in 3D in vitro assay systems. In our experiments elevated lysyl oxidase activity was responsible for reduced drug diffusion under hypoxic conditions and consequently impaired cytotoxicity of various chemotherapeutics. This effect was only observed in 3D settings but not in 2D-cell culture, confirming that lysyl oxidases affect drug efficacy by modification of the ECM and do not confer a direct desensitizing effect. Both drug diffusion and efficacy were strongly enhanced by inhibition of lysyl oxidases. The results from the in vitro experiments correlated with tumor drug distribution in vivo, and predicted response to therapeutics in murine tumor models. Our results demonstrate that lysyl oxidase activity modulates the physical barrier function of ECM for small molecule drugs influencing their therapeutic efficacy. Targeting this process has the potential to significantly enhance therapeutic efficacy in the treatment of malignant diseases.}, language = {en} } @article{RamachandranVivaresKlieberetal.2015, author = {Ramachandran, Sarada D. and Vivar{\`e}s, Aur{\´e}lie and Klieber, Sylvie and Hewitt, Nicola J. and Muenst, Bernhard and Heinz, Stefan and Walles, Heike and Braspenning, Joris}, title = {Applicability of second-generation upcyte\(^{®}\) human hepatocytes for use in CYP inhibition and induction studies}, series = {Pharmacology Research \& Perspectives}, volume = {3}, journal = {Pharmacology Research \& Perspectives}, number = {5}, doi = {10.1002/prp2.161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149564}, pages = {e00161}, year = {2015}, abstract = {Human upcyte\(^{®}\) hepatocytes are proliferating hepatocytes that retain many characteristics of primary human hepatocytes. We conducted a comprehensive evaluation of the application of second-generation upcyte\(^{®}\) hepatocytes from four donors for inhibition and induction assays using a selection of reference inhibitors and inducers. CYP1A2, CYP2B6, CYP2C9, and CYP3A4 were reproducibly inhibited in a concentration-dependent manner and the calculated IC\(_{50}\) values for each compound correctly classified them as potent inhibitors. Upcyte\(^{®}\) hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9, and CYP3A4 inducers, confirming that they have functional AhR-, CAR-, and PXR-mediated CYP regulation. A panel of 11 inducers classified as potent, moderate or noninducers of CYP3A4 and CYP2B6 were tested. There was a good fit of data from upcyte\(^{®}\) hepatocytes to three different predictive models for CYP3A4 induction, namely the Relative Induction Score (RIS), AUC\(_{u}\)/F\(_{2}\), and C\(_{max,u}\)/Ind\(_{50}\). In addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were demonstrated. In conclusion, these data support the use of second-generation upcyte\(^{®}\) hepatocytes for CYP inhibition and induction assays. Under the culture conditions used, these cells expressed CYP activities that were equivalent to or higher than those measured in primary human hepatocyte cultures, which could be inhibited or induced by prototypical CYP inhibitors and inducers, respectively. Moreover, they can be used to predict in vivo CYP3A4 induction potential using three prediction models. Bulk availability of cells from multiple donors makes upcyte\(^{®}\) hepatocytes suitable for DDI screening, as well as more in-depth mechanistic investigations.}, language = {en} }