@article{KesslerHertelJungkunstetal.2012, author = {Kessler, Michael and Hertel, Dietrich and Jungkunst, Hermann F. and Kluge, J{\"u}rgen and Abrahamczyk, Stefan and Bos, Merijn and Buchori, Damayanti and Gerold, Gerhard and Gradstein, S. Robbert and K{\"o}hler, Stefan and Leuschner, Christoph and Moser, Gerald and Pitopang, Ramadhanil and Saleh, Shahabuddin and Schulze, Christian H. and Sporn, Simone G. and Steffan-Dewenter, Ingolf and Tjitrosoedirdjo, Sri S. and Tscharntke, Teja}, title = {Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0047192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132016}, pages = {e47192}, year = {2012}, abstract = {Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential 'win-win' scenario has not yet been assessed for tropical agroforestry landscapes. We measured above-and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227-362 Mg C ha\(^{-1}\) to agroforests with 82-211 Mg C ha\(^{-1}\) showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60\% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels.}, language = {en} } @article{DossoYeoKonateetal.2012, author = {Dosso, Kanvaly and Yeo, Kolo and Konate, Souleymane and Linsenmair, Karl Eduard}, title = {Importance of protected areas for biodiversity conservation in central Cote d'Ivoire: Comparison of termite assemblages between two neighboring areas under differing levels of disturbance}, series = {Journal of Insect Science}, volume = {12}, journal = {Journal of Insect Science}, number = {131}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133218}, year = {2012}, abstract = {To highlight human impact on biodiversity in the Lamto region, termites were studied with regard to their use as bio-indicators of habitat change in the tropics. Using a standardized method, termites were sampled in the three most common habitat types, i.e., in semi-deciduous forest, savanna woodland, and annually burned savanna, all inside Lamto Reserve and its surrounding rural domain. Termite species richness fell from 25 species in the Lamto forest to 13 species in the rural area, involving strong modification in the species composition (species turnover = 59 \%). In contrast, no significant change in diversity was found between the Lamto savannas and the rural ones. In addition, the relative abundance of termites showed a significantly greater decline in the rural domain, even in the species Ancistrotermes cavithorax (Sjostedt) (Isoptera: Termitidae), which is known to be ecologically especially versatile. Overall, the findings of this study suggest further investigation around Lamto Reserve on the impact of human activities on biodiversity, focusing on forest conversion to land uses (e.g. agricultural and silvicultural systems).}, language = {en} }