@phdthesis{Devine2013, author = {Devine, Eric}, title = {Increased removal of protein bound uremic toxins through reversible modification of the ionic strength during hemodiafiltration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83583}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {A large number of metabolic waste products accumulate in the blood of patients with renal failure. Since these solutes have deleterious effects on the biological functions, they are called uremic toxins and have been classified in three groups: 1) small water soluble solutes (MW < 500 Da), 2) small solutes with known protein binding (MW < 500 Da), and 3) middle molecules (500 Da < MW < 60 kDa). Protein bound uremic toxins are poorly removed by conventional hemodialysis treatments because of their high protein binding and high distribution volume. The prototypical protein bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (pCS) are associated with the progression of chronic kidney disease, cardiovascular outcomes, and mortality of patients on maintenance hemodialysis. Furthermore, these two compounds are bound to albumin, the main plasma protein, via electrostatic and/or Van-der-Waals forces. The aim of the present thesis was to develop a dialysis strategy, based on the reversible modification of the ionic strength in the blood stream by increasing the sodium chloride (NaCl) concentration, in order to enhance the removal of protein bound substances, such as IS and pCS, with the ultimate goal to improve clinical patient outcomes. Enhancing the NaCl concentration ([NaCl]) in both human normal and uremic plasma was efficient to reduce the protein bound fraction of both IS and pCS by reducing their binding affinity to albumin. Increasing the ionic strength was feasible during modified pre-dilution hemodiafiltration (HDF) by increasing the [NaCl] in the substitution fluid. The NaCl excess was adequately removed within the hemodialyzer. This method was effective to increase the removal rate of both protein bound uremic toxins. Its ex vivo hemocompatibility, however, was limited by the osmotic shock induced by the high [NaCl] in the substituate. Therefore, modified pre-dilution HDF was further iterated by introducing a second serial cartridge, named the serial dialyzers (SDial) setup. This setting was validated for feasibility, hemocompatibility, and toxin removal efficiency. A better hemocompatibility at similar efficacy was obtained with the SDial setup compared with the modified pre-dilution HDF. Both methods were finally tested in an animal sheep model of dialysis to verify biocompatibility. Low hemolysis and no activation of both the complement and the coagulation systems were observed when increasing the [NaCl] in blood up to 0.45 and 0.60 M with the modified pre-dilution HDF and the SDial setup, respectively. In conclusion, the two dialysis methods developed to transitory enhance the ionic strength in blood demonstrated adequate biocompatibility and improved the removal of protein bound uremic toxins by decreasing their protein bound fraction. The concepts require follow-on clinical trials to assess their in vivo efficacy and their impact on long-term clinical outcomes.}, subject = {H{\"a}modiafiltration}, language = {en} } @article{DevineKrieterRuethetal.2014, author = {Devine, Eric and Krieter, Detlef H. and R{\"u}th, Marieke and Jankovski, Joachim and Lemke, Horst-Dieter}, title = {Binding Affinity and Capacity for the Uremic Toxin Indoxyl Sulfate}, series = {Toxins}, volume = {6}, journal = {Toxins}, number = {2}, doi = {10.3390/toxins6020416}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117486}, pages = {416-429}, year = {2014}, abstract = {Protein binding prevents uremic toxins from removal by conventional extracorporeal therapies leading to accumulation in maintenance dialysis patients. Weakening of the protein binding may enhance the dialytic elimination of these toxins. In ultrafiltration and equilibrium dialysis experiments, different measures to modify the plasma binding affinity and capacity were tested: (i), increasing the sodium chloride (NaCl) concentration to achieve a higher ionic strength; (ii), increasing the temperature; and (iii), dilution. The effects on the dissociation constant K-D and the protein bound fraction of the prototypical uremic toxin indoxyl sulfate (IS) in plasma of healthy and uremic individuals were studied. Binding of IS corresponded to one site binding in normal plasma. K-D increased linearly with the NaCl concentration between 0.15 (K-D = 13.2 +/- 3.7 mu M) and 0.75 M (K-D = 56.2 +/- 2.0 mu M). Plasma dilution further reduced the protein bound toxin fraction by lowering the protein binding capacity of the plasma. Higher temperatures also decreased the protein bound fraction of IS in human plasma. Increasing the NaCl concentration was effective to weaken the binding of IS also in uremic plasma: the protein bound fraction decreased from 89\% +/- 3\% to 81\% +/- 3\% at 0.15 and 0.75 M NaCl, respectively. Dilution and increasing the ionic strength and temperature enhance the free fraction of IS allowing better removal of the substance during dialysis. Applied during clinical dialysis, this may have beneficial effects on the long-term outcome of maintenance dialysis patients.}, language = {en} } @phdthesis{Heinze2004, author = {Heinze, Andreas}, title = {Bestimmung des Ausmaßes der Proteinbindung von Arzneistoffen mittels automatisierter kontinuierlicher Ultrafiltration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11277}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Das Ausmaß der Proteinbindung eines Arzneistoffs hat Auswirkungen auf eine Vielzahl pharmakokinetischer Parameter wie z.B. das Verteilungsvolumen, die Metabolisierung oder Ausscheidung. Da nur der freie, ungebundene Anteil eines Arzneistoffs durch bio-logische Membranen diffundieren kann, ist dieser direkt f{\"u}r die pharmakologische Wirkung verantwortlich. Lediglich diese ungebundenen und damit frei beweglichen Arzneistoffmolek{\"u}le sind also in der Lage, an Rezeptoren zu binden und damit einen Effekt auszul{\"o}sen. Je gr{\"o}ßer der ungebundene Anteil eines Arzneistoffs ist, desto gr{\"o}ßer kann auch der Effekt sein, den er zu bewirken vermag. Wird nun diese freie Konzentration ver{\"a}ndert, so kann sich demzufolge die Wirkintensit{\"a}t des Arzneistoffs ver{\"a}ndern. Daraus folgt, dass die Kenntnis {\"u}ber die Proteinbindung speziell f{\"u}r die Dosisfindung eines Arzneistoffs unerl{\"a}sslich ist. Diese Zusammenh{\"a}nge veranschaulichen, welche Bedeutung das Ausmaß der Proteinbindung eines Arzneistoffs hat. F{\"u}r die Bestimmung der Proteinbindung existiert eine Vielzahl von Methoden. Neben der klassischen Gleichgewichtsdialyse werden vor allem Ultrafiltrationstechniken angewendet. Neuere Verfahren stellen verschiedenste kapillarelektrophoretische Methoden dar. Allen Verfahren ist gemein, dass es sich um In-vitro-Methoden handelt. Als einzige In-vivo-Methode hat sich die Mikrodialyse etabliert. Die im Rahmen dieser Arbeit entwickelte Bestimmungsmethode f{\"u}r das Ausmaß der Proteinbindungen stellt eine kontinuierliche Variante der Ultrafiltration dar. Mit Hilfe des in dieser Arbeit beschriebenen Verfahrens ist es im m{\"o}glich, mit einem einzigen Experiment Proteinbindungen {\"u}ber einen großen Bereich verschiedener Arzneistoff-Protein-Verh{\"a}ltnisse zu berechnen. Dadurch wird die Bestimmung schneller und auch kosteng{\"u}nstiger. Zus{\"a}tzlich wurde dieses Verfahren teilweise automatisiert, d.h. die Versuche werden programmgesteuert durchgef{\"u}hrt und ein manuelles Eingreifen ist nur noch an wenigen Stellen eines Versuches notwendig. Die Messanlage zur kontinuierlichen Ultrafiltration wurde nach dem Vorbild der Anlage von Oehlmann aufgebaut und im Zuge dessen fortentwickelt. Herzst{\"u}ck ist die Messzelle aus Plexiglas. Sie besteht aus einem Ober- und einem Unterteil. In diesem befindet sich eine Vertiefung f{\"u}r die R{\"u}hrscheibe. Beim Zusammenbau werden zwischen die beiden Teile die Filterunterst{\"u}tzung und eine Ultrafiltrationsmembran gelegt. Die Ultrafiltrationsmembran h{\"a}lt hierbei aufgrund ihrer Trenngrenze die Proteinmolek{\"u}le in der Messzelle zur{\"u}ck und l{\"a}sst nur freie Arzneistoffmolek{\"u}le durch. Ein Dichtungsring sorgt daf{\"u}r, dass die Zelle, nachdem sie in einem Gestell fixiert wurde, nach außen hin dicht abschließt. W{\"a}hrend eines Versuches werden abwechselnd Arzneistoffl{\"o}sung und reine Pufferl{\"o}sung durch die Messzelle gepumpt. Am Auslass der Ultrafiltrationszelle wird die Absorption gemessen, die zu Absorptions-Zeit-Diagrammen f{\"u}hren. Wird nun der gleiche Versuch durchgef{\"u}hrt, nachdem eine Proteinl{\"o}sung in die Messzelle injiziert wurde, verschiebt sich diese Kurve aufgrund der Wechselwirkung zwischen Arzneistoff und Proteinl{\"o}sung nach rechts. Die Fl{\"a}che zwischen diesen beiden Kurven kann als Maß f{\"u}r die Proteinbindung herangezogen werden. F{\"u}r die Auswertung der Versuche wird aus den Messdaten errechnet, wie viel Arzneistoff sich zu jedem Zeitpunkt des Versuchs in der Messzelle befunden hat und wie viel ungebunden vorlag und damit am Detektor messbar ist. Da die Konzentration an Arzneistoff in der Messzelle im Laufe eines Versuches kontinuierlich gesteigert wird, erh{\"a}lt man Bindungsdaten {\"u}ber einen weiten Bereich von Arzneistoff-Protein-Verh{\"a}ltnissen. In dieser Arbeit wurden sowohl Versuche mit Rinderserumalbumin (BSA) als auch mit humanem Serumalbumin (HSA) durchgef{\"u}hrt. Die Standardabweichungen der bestimmten Proteinbindungswerte steigen mit fallender Proteinbindung. Damit sind sie nach außen hin neutral und ihre L{\"o}slichkeit sinkt. Wie die Ergebnisse zeigen, konnte dennoch das Ausmaß der Proteinbindung f{\"u}r eine Reihe von Fluorochinolonen bestimmt werden. Zus{\"a}tzlich wurden mit dem Oxazolidinon Linezolid und dem Ketolid Telithromycin weitere Antibiotika vermessen. Die Proteinbindungen aller untersuchten Arzneistoffe gegen{\"u}ber HSA stimmen mit Daten aus der Literatur {\"u}berein. Wie bereits erw{\"a}hnt lassen sich hierbei kleine Abweichungen sowohl mit unterschiedlichen Bestimmungsmethoden als auch mit verschiedenen eingesetzten Proteinen erkl{\"a}ren. Die Literaturdaten geben meist die Plasmaproteinbindung eines Arzneistoffes wider und die Messungen in der vorliegenden Arbeit wurden allesamt mit Albumin, sei es vom Mensch oder Rind, durchgef{\"u}hrt. Da jedoch neben dem Albumin auch noch weitere Bestandteile des Plasmas mit den Arzneistoffmolek{\"u}len wechselwirken k{\"o}nnen, sind unterschiedliche Proteinbindungen zu erwarten.}, language = {de} } @article{SchmidtHolzgrabe2024, author = {Schmidt, Sebastian and Holzgrabe, Ulrike}, title = {Do the enantiomers of ketamine bind enantioselectively to human serum albumin?}, series = {European Journal of Pharmaceutical Sciences}, volume = {192}, journal = {European Journal of Pharmaceutical Sciences}, doi = {10.1016/j.ejps.2023.106640}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349791}, year = {2024}, abstract = {The binding of drugs to plasma proteins is an important process in the human body and has a significant influence on pharmacokinetic parameter. Human serum albumin (HSA) has the most important function as a transporter protein. The binding of ketamine to HSA has already been described in literature, but only of the racemate. The enantiomerically pure S-ketamine is used as injection solution for induction of anesthesia and has been approved by the Food and Drug Administration for the therapy of severe depression as a nasal spray in 2019. The question arises if there is enantioselective binding to HSA. Hence, the aim of this study was to investigate whether there is enantioselective binding of S-and R-ketamine to HSA or not. Ultrafiltration (UF) followed by chiral capillary electrophoretic analysis was used to determine the extent of protein binding. Bound fraction to HSA was 71.2 \% and 64.9 \% for enantiomerically pure R- and S-ketamine, respectively, and 66.5 \% for the racemate. Detailed binding properties were studied by Saturation Transfer Difference (STD)-, waterLOGSY- and Carr-Purcell-Meiboom-Gill (CPMG)-NMR spectroscopy. With all three methods, the aromatic ring and the N-methyl group could be identified as the structural moieties most strongly involved in binding of ketamine to HSA. pK\(_{aff}\) values determined using UF and NMR indicate that ketamine is a weak affinity ligand to HSA and no significant differences in binding behavior were found between the individual enantiomers and the racemate.}, language = {en} } @article{SchmidtZeheHolzgrabe2023, author = {Schmidt, Sebastian and Zehe, Markus and Holzgrabe, Ulrike}, title = {Characterization of binding properties of ephedrine derivatives to human alpha-1-acid glycoprotein}, series = {European Journal of Pharmaceutical Sciences}, volume = {181}, journal = {European Journal of Pharmaceutical Sciences}, doi = {10.1016/j.ejps.2022.106333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300848}, year = {2023}, abstract = {Most drugs, especially those with acidic or neutral moieties, are bound to the plasma protein albumin, whereas basic drugs are preferentially bound to human alpha-1-acid glycoprotein (AGP). The protein binding of the long-established drugs ephedrine and pseudoephedrine, which are used in the treatment of hypotension and colds, has so far only been studied with albumin. Since in a previous study a stereoselective binding of ephedrine and pseudoephedrine to serum but not to albumin was observed, the aim of this study was to check whether the enantioselective binding behavior of ephedrine and pseudoephedrine, in addition to the derivatives methylephedrine and norephedrine, is due to AGP and to investigate the influence of their different substituents and steric arrangement. Discontinuous ultrafiltration was used for the determination of protein binding. Characterization of ligand-protein interactions of the drugs was obtained by saturation transfer difference nuclear magnetic resonance spectroscopy. Docking experiments were performed to analyze possible ligand-protein interactions. The more basic the ephedrine derivative is, the higher is the affinity to AGP. There was no significant difference in the binding properties between the individual enantiomers and the diastereomers of ephedrine and pseudoephedrine.}, language = {en} } @article{ShahBulittaKinzigetal.2019, author = {Shah, Nirav R. and Bulitta, J{\"u}rgen B. and Kinzig, Martina and Landersdorfer, Cornelia B. and Jiao, Yuanyuan and Sutaria, Dhruvitkumar S. and Tao, Xun and H{\"o}hl, Rainer and Holzgrabe, Ulrike and Kees, Frieder and Stephan, Ulrich and S{\"o}rgel, Fritz}, title = {Novel population pharmacokinetic approach to explain the differences between cystic fibrosis patients and healthy volunteers via protein binding}, series = {Pharmaceutics}, volume = {11}, journal = {Pharmaceutics}, number = {6}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11060286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196934}, year = {2019}, abstract = {The pharmacokinetics in patients with cystic fibrosis (CF) has long been thought to differ considerably from that in healthy volunteers. For highly protein bound β-lactams, profound pharmacokinetic differences were observed between comparatively morbid patients with CF and healthy volunteers. These differences could be explained by body weight and body composition for β-lactams with low protein binding. This study aimed to develop a novel population modeling approach to describe the pharmacokinetic differences between both subject groups by estimating protein binding. Eight patients with CF (lean body mass [LBM]: 39.8 ± 5.4kg) and six healthy volunteers (LBM: 53.1 ± 9.5kg) received 1027.5 mg cefotiam intravenously. Plasma concentrations and amounts in urine were simultaneously modelled. Unscaled total clearance and volume of distribution were 3\% smaller in patients with CF compared to those in healthy volunteers. After allometric scaling by LBM to account for body size and composition, the remaining pharmacokinetic differences were explained by estimating the unbound fraction of cefotiam in plasma. The latter was fixed to 50\% in male and estimated as 54.5\% in female healthy volunteers as well as 56.3\% in male and 74.4\% in female patients with CF. This novel approach holds promise for characterizing the pharmacokinetics in special patient populations with altered protein binding.}, language = {en} }