@article{DollKolbSchnappetal.2020, author = {Doll, Julia and Kolb, Susanne and Schnapp, Linda and Rad, Aboulfazl and R{\"u}schendorf, Franz and Khan, Imran and Adli, Abolfazl and Hasanzadeh, Atefeh and Liedtke, Daniel and Knaup, Sabine and Hofrichter, Michaela AH and M{\"u}ller, Tobias and Dittrich, Marcus and Kong, Il-Keun and Kim, Hyung-Goo and Haaf, Thomas and Vona, Barbara}, title = {Novel loss-of-function variants in CDC14A are associated with recessive sensorineural hearing loss in Iranian and Pakistani patients}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms21010311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285142}, year = {2020}, abstract = {CDC14A encodes the Cell Division Cycle 14A protein and has been associated with autosomal recessive non-syndromic hearing loss (DFNB32), as well as hearing impairment and infertile male syndrome (HIIMS) since 2016. To date, only nine variants have been associated in patients whose initial symptoms included moderate-to-profound hearing impairment. Exome analysis of Iranian and Pakistani probands who both showed bilateral, sensorineural hearing loss revealed a novel splice site variant (c.1421+2T>C, p.?) that disrupts the splice donor site and a novel frameshift variant (c.1041dup, p.Ser348Glnfs*2) in the gene CDC14A, respectively. To evaluate the pathogenicity of both loss-of-function variants, we analyzed the effects of both variants on the RNA-level. The splice variant was characterized using a minigene assay. Altered expression levels due to the c.1041dup variant were assessed using RT-qPCR. In summary, cDNA analysis confirmed that the c.1421+2T>C variant activates a cryptic splice site, resulting in a truncated transcript (c.1414_1421del, p.Val472Leufs*20) and the c.1041dup variant results in a defective transcript that is likely degraded by nonsense-mediated mRNA decay. The present study functionally characterizes two variants and provides further confirmatory evidence that CDC14A is associated with a rare form of hereditary hearing loss.}, language = {en} } @article{LiedtkeOrthMeissleretal.2019, author = {Liedtke, Daniel and Orth, Melanie and Meissler, Michelle and Geuer, Sinje and Knaup, Sabine and K{\"o}blitz, Isabell and Klopocki, Eva}, title = {ECM alterations in fndc3a (fibronectin domain containing protein 3A) deficient zebrafish cause temporal fin development and regeneration defects}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-50055-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202141}, pages = {13383}, year = {2019}, abstract = {Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3a\(^{wue1/wue1}\)) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3a\(^{wue1/wue1}\) mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish.}, language = {en} }