@article{FeldheimKesslerFeldheimetal.2023, author = {Feldheim, Jonas and Kessler, Almuth F. and Feldheim, Julia J. and Schmitt, Dominik and Oster, Christoph and Lazaridis, Lazaros and Glas, Martin and Ernestus, Ralf-Ingo and Monoranu, Camelia M. and L{\"o}hr, Mario and Hagemann, Carsten}, title = {BRMS1 in gliomas — an expression analysis}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers15112907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319225}, year = {2023}, abstract = {The metastatic suppressor BRMS1 interacts with critical steps of the metastatic cascade in many cancer entities. As gliomas rarely metastasize, BRMS1 has mainly been neglected in glioma research. However, its interaction partners, such as NFκB, VEGF, or MMPs, are old acquaintances in neurooncology. The steps regulated by BRMS1, such as invasion, migration, and apoptosis, are commonly dysregulated in gliomas. Therefore, BRMS1 shows potential as a regulator of glioma behavior. By bioinformatic analysis, in addition to our cohort of 118 specimens, we determined BRMS1 mRNA and protein expression as well as its correlation with the clinical course in astrocytomas IDH mutant, CNS WHO grade 2/3, and glioblastoma IDH wild-type, CNS WHO grade 4. Interestingly, we found BRMS1 protein expression to be significantly decreased in the aforementioned gliomas, while BRMS1 mRNA appeared to be overexpressed throughout. This dysregulation was independent of patients' characteristics or survival. The protein and mRNA expression differences cannot be finally explained at this stage. However, they suggest a post-transcriptional dysregulation that has been previously described in other cancer entities. Our analyses present the first data on BRMS1 expression in gliomas that can provide a starting point for further investigations.}, language = {en} } @article{NicklEckGoedertetal.2023, author = {Nickl, Vera and Eck, Juliana and Goedert, Nicolas and H{\"u}bner, Julian and Nerreter, Thomas and Hagemann, Carsten and Ernestus, Ralf-Ingo and Schulz, Tim and Nickl, Robert Carl and Keßler, Almuth Friederike and L{\"o}hr, Mario and Rosenwald, Andreas and Breun, Maria and Monoranu, Camelia Maria}, title = {Characterization and optimization of the tumor microenvironment in patient-derived organotypic slices and organoid models of glioblastoma}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {10}, issn = {2072-6694}, doi = {10.3390/cancers15102698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319249}, year = {2023}, abstract = {While glioblastoma (GBM) is still challenging to treat, novel immunotherapeutic approaches have shown promising effects in preclinical settings. However, their clinical breakthrough is hampered by complex interactions of GBM with the tumor microenvironment (TME). Here, we present an analysis of TME composition in a patient-derived organoid model (PDO) as well as in organotypic slice cultures (OSC). To obtain a more realistic model for immunotherapeutic testing, we introduce an enhanced PDO model. We manufactured PDOs and OSCs from fresh tissue of GBM patients and analyzed the TME. Enhanced PDOs (ePDOs) were obtained via co-culture with PBMCs (peripheral blood mononuclear cells) and compared to normal PDOs (nPDOs) and PT (primary tissue). At first, we showed that TME was not sustained in PDOs after a short time of culture. In contrast, TME was largely maintained in OSCs. Unfortunately, OSCs can only be cultured for up to 9 days. Thus, we enhanced the TME in PDOs by co-culturing PDOs and PBMCs from healthy donors. These cellular TME patterns could be preserved until day 21. The ePDO approach could mirror the interaction of GBM, TME and immunotherapeutic agents and may consequently represent a realistic model for individual immunotherapeutic drug testing in the future.}, language = {en} } @article{FeldheimKesslerFeldheimetal.2022, author = {Feldheim, Jonas and Kessler, Almuth F. and Feldheim, Julia J. and Schulz, Ellina and Wend, David and Lazaridis, Lazaros and Kleinschnitz, Christoph and Glas, Martin and Ernestus, Ralf-Ingo and Brandner, Sebastian and Monoranu, Camelia M. and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Effects of long-term temozolomide treatment on glioblastoma and astrocytoma WHO grade 4 stem-like cells}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms23095238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284417}, year = {2022}, abstract = {Glioblastoma leads to a fatal course within two years in more than two thirds of patients. An essential cornerstone of therapy is chemotherapy with temozolomide (TMZ). The effect of TMZ is counteracted by the cellular repair enzyme O\(^6\)-methylguanine-DNA methyltransferase (MGMT). The MGMT promoter methylation, the main regulator of MGMT expression, can change from primary tumor to recurrence, and TMZ may play a significant role in this process. To identify the potential mechanisms involved, three primary stem-like cell lines (one astrocytoma with the mutation of the isocitrate dehydrogenase (IDH), CNS WHO grade 4 (HGA)), and two glioblastoma (IDH-wildtype, CNS WHO grade 4) were treated with TMZ. The MGMT promoter methylation, migration, proliferation, and TMZ-response of the tumor cells were examined at different time points. The strong effects of TMZ treatment on the MGMT methylated cells were observed. Furthermore, TMZ led to a loss of the MGMT promoter hypermethylation and induced migratory rather than proliferative behavior. Cells with the unmethylated MGMT promoter showed more aggressive behavior after treatment, while HGA cells reacted heterogenously. Our study provides further evidence to consider the potential adverse effects of TMZ chemotherapy and a rationale for investigating potential relationships between TMZ treatment and change in the MGMT promoter methylation during relapse.}, language = {en} } @article{PolatWohllebenKosmalaetal.2022, author = {Polat, B{\"u}lent and Wohlleben, Gisela and Kosmala, Rebekka and Lisowski, Dominik and Mantel, Frederick and Lewitzki, Victor and L{\"o}hr, Mario and Blum, Robert and Herud, Petra and Flentje, Michael and Monoranu, Camelia-Maria}, title = {Differences in stem cell marker and osteopontin expression in primary and recurrent glioblastoma}, series = {Cancer Cell International}, volume = {22}, journal = {Cancer Cell International}, issn = {1475-2867}, doi = {10.1186/s12935-022-02510-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301240}, year = {2022}, abstract = {Background Despite of a multimodal approach, recurrences can hardly be prevented in glioblastoma. This may be in part due to so called glioma stem cells. However, there is no established marker to identify these stem cells. Methods Paired samples from glioma patients were analyzed by immunohistochemistry for expression of the following stem cell markers: CD133, Musashi, Nanog, Nestin, octamer-binding transcription factor 4 (Oct4), and sex determining region Y-box 2 (Sox2). In addition, the expression of osteopontin (OPN) was investigated. The relative number of positively stained cells was determined. By means of Kaplan-Meier analysis, a possible association with overall survival by marker expression was investigated. Results Sixty tissue samples from 30 patients (17 male, 13 female) were available for analysis. For Nestin, Musashi and OPN a significant increase was seen. There was also an increase (not significant) for CD133 and Oct4. Patients with mutated Isocitrate Dehydrogenase-1/2 (IDH-1/2) status had a reduced expression for CD133 and Nestin in their recurrent tumors. Significant correlations were seen for CD133 and Nanog between OPN in the primary and recurrent tumor and between CD133 and Nestin in recurrent tumors. By confocal imaging we could demonstrate a co-expression of CD133 and Nestin within recurrent glioma cells. Patients with high CD133 expression had a worse prognosis (22.6 vs 41.1 months, p = 0.013). A similar trend was seen for elevated Nestin levels (24.9 vs 41.1 months, p = 0.08). Conclusions Most of the evaluated markers showed an increased expression in their recurrent tumor. CD133 and Nestin were associated with survival and are candidate markers for further clinical investigation.}, language = {en} } @article{NicklSchulzSalvadoretal.2022, author = {Nickl, Vera and Schulz, Ellina and Salvador, Ellaine and Trautmann, Laureen and Diener, Leopold and Kessler, Almuth F. and Monoranu, Camelia M. and Dehghani, Faramarz and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Glioblastoma-derived three-dimensional ex vivo models to evaluate effects and efficacy of Tumor Treating Fields (TTFields)}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {21}, issn = {2072-6694}, doi = {10.3390/cancers14215177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290340}, year = {2022}, abstract = {Simple Summary In glioblastoma, tumor recurrence is inevitable and the prognosis of patients is poor, despite multidisciplinary treatment approaches involving surgical resection, radiotherapy and chemotherapy. Recently, Tumor Treating Fields (TTFields) have been added to the therapeutic set-up. These alternating electric fields are applied to glioblastoma at 200 kHz frequency via arrays placed on the shaved scalp of patients. Patients show varying response to this therapy. Molecular effects of TTFields have been investigated largely in cell cultures and animal models, but not in patient tissue samples. Acquisition of matched treatment-na{\"i}ve and recurrent patient tissues is a challenge. Therefore, we suggest three reliable patient-derived three-dimensional ex vivo models (primary cells grown as microtumors on murine organotypic hippocampal slices, organoids and tumor slice cultures) which may facilitate prediction of patients' treatment responses and provide important insights into clinically relevant cellular and molecular alterations under TTFields. Abstract Glioblastoma (GBM) displays a wide range of inter- and intra-tumoral heterogeneity contributing to therapeutic resistance and relapse. Although Tumor Treating Fields (TTFields) are effective for the treatment of GBM, there is a lack of ex vivo models to evaluate effects on patients' tumor biology or to screen patients for treatment efficacy. Thus, we adapted patient-derived three-dimensional tissue culture models to be compatible with TTFields application to tissue culture. Patient-derived primary cells (PDPC) were seeded onto murine organotypic hippocampal slice cultures (OHSC), and microtumor development with and without TTFields at 200 kHz was observed. In addition, organoids were generated from acute material cultured on OHSC and treated with TTFields. Lastly, the effect of TTFields on expression of the Ki67 proliferation marker was evaluated on cultured GBM slices. Microtumors exhibited increased sensitivity towards TTFields compared to monolayer cell cultures. TTFields affected tumor growth and viability, as the size of microtumors and the percentage of Ki67-positive cells decreased after treatment. Nevertheless, variability in the extent of the response was preserved between different patient samples. Therefore, these pre-clinical GBM models could provide snapshots of the tumor to simulate patient treatment response and to investigate molecular mechanisms of response and resistance.}, language = {en} } @article{LoehrHaertigSchulzeetal.2022, author = {L{\"o}hr, Mario and H{\"a}rtig, Wolfgang and Schulze, Almut and Kroiß, Matthias and Sbiera, Silviu and Lapa, Constantin and Mages, Bianca and Strobel, Sabrina and Hundt, Jennifer Elisabeth and Bohnert, Simone and Kircher, Stefan and Janaki-Raman, Sudha and Monoranu, Camelia-Maria}, title = {SOAT1: A suitable target for therapy in high-grade astrocytic glioma?}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284178}, year = {2022}, abstract = {Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages.}, language = {en} } @article{KesslerFeldheimSchmittetal.2020, author = {Kessler, Almuth F. and Feldheim, Jonas and Schmitt, Dominik and Feldheim, Julia J. and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Monopolar Spindle 1 Kinase (MPS1/TTK) mRNA Expression is Associated with Earlier Development of Clinical Symptoms, Tumor Aggressiveness and Survival of Glioma Patients}, series = {Biomedicines}, volume = {8}, journal = {Biomedicines}, number = {7}, doi = {10.3390/biomedicines8070192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236105}, year = {2020}, abstract = {Inhibition of the protein kinase MPS1, a mitotic spindle-checkpoint regulator, reinforces the effects of multiple therapies against glioblastoma multiforme (GBM) in experimental settings. We analyzed MPS1 mRNA-expression in gliomas WHO grade II, III and in clinical subgroups of GBM. Data were obtained by qPCR analysis of tumor and healthy brain specimens and correlated with the patients' clinical data. MPS1 was overexpressed in all gliomas on an mRNA level (ANOVA, p < 0.01) and correlated with tumor aggressiveness. We explain previously published conflicting results on survival: high MPS1 was associated with poorer long term survival when all gliomas were analyzed combined in one group (Cox regression: t < 24 months, p = 0.009, Hazard ratio: 8.0, 95\% CI: 1.7-38.4), with poorer survival solely in low-grade gliomas (LogRank: p = 0.02, Cox regression: p = 0.06, Hazard-Ratio: 8.0, 95\% CI: 0.9-66.7), but not in GBM (LogRank: p > 0.05). This might be due to their lower tumor volume at the therapy start. GBM patients with high MPS1 mRNA-expression developed clinical symptoms at an earlier stage. This, however, did not benefit their overall survival, most likely due to the more aggressive tumor growth. Since MPS1 mRNA-expression in gliomas was enhanced with increasing tumor aggressiveness, patients with the worst outcome might benefit best from a treatment directed against MPS1.}, language = {en} } @article{NattmannBreunMonoranuetal.2020, author = {Nattmann, Anja and Breun, Maria and Monoranu, Camelia M. and Matthies, Cordula and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Analysis of ADAM9 regulation and function in vestibular schwannoma primary cells}, series = {BMC Research Notes}, volume = {13}, journal = {BMC Research Notes}, doi = {10.1186/s13104-020-05378-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231213}, year = {2020}, abstract = {Objective Recently, we described a disintegrin and metalloproteinase 9 (ADAM9) overexpression by Schwann cells of vestibular schwannoma (VS) and suggested that it might be a marker for VS tumor growth and invasiveness. This research note provides additional data utilizing a small cohort of VS primary cultures and tissue samples. We examined whether reconstitution of Merlin expression in VS cells regulates ADAM9 protein expression and performed lentiviral ADAM9 knock down to investigate possible effects on VS cells numbers. Moreover, the co-localization of ADAM9 and Integrins α6 and α2β1, respectively, was examined by immunofluorescence double staining. Results ADAM9 expression was not regulated by Merlin in VS. However, ADAM9 knock down led to 58\% reduction in cell numbers in VS primary cell cultures (p < 0.0001). While ADAM9 and Integrin α2β1 were co-localized in only 22\% (2 of 9) of VS, ADAM9 and Integrin α6 were co-localized in 91\% (10 of 11) of VS. Therefore, we provide first observations on possible regulatory functions of ADAM9 expression in VS.}, language = {en} } @article{FeldheimKesslerSchmittetal.2020, author = {Feldheim, Jonas and Kessler, Almuth F. and Schmitt, Dominik and Salvador, Ellaine and Monoranu, Camelia M. and Feldheim, Julia J. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Ribosomal Protein S27/Metallopanstimulin-1 (RPS27) in Glioma — A New Disease Biomarker?}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {5}, issn = {2072-6694}, doi = {10.3390/cancers12051085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203648}, year = {2020}, abstract = {Despite its significant overexpression in several malignant neoplasms, the expression of RPS27 in the central nervous system (CNS) is widely unknown. We identified the cell types expressing RPS27 in the CNS under normal and disease conditions. We acquired specimens of healthy brain (NB), adult pilocytic astrocytoma (PA) World Health Organization (WHO) grade I, anaplastic PA WHO grade III, gliomas WHO grade II/III with or without isocitrate dehydrogenase (IDH) mutation, and glioblastoma multiforme (GBM). RPS27 protein expression was examined by immunohistochemistry and double-fluorescence staining and its mRNA expression quantified by RT-PCR. Patients' clinical and tumor characteristics were collected retrospectively. RPS27 protein was specifically expressed in tumor cells and neurons, but not in healthy astrocytes. In tumor tissue, most macrophages were positive, while this was rarely the case in inflamed tissue. Compared to NB, RPS27 mRNA was in mean 6.2- and 8.8-fold enhanced in gliomas WHO grade II/III with (p < 0.01) and without IDH mutation (p = 0.01), respectively. GBM displayed a 4.6-fold increased mean expression (p = 0.02). Although RPS27 expression levels did not affect the patients' survival, their association with tumor cells and tumor-associated macrophages provides a rationale for a future investigation of a potential function during gliomagenesis and tumor immune response.}, language = {en} } @article{BreunMonoranuKessleretal.2019, author = {Breun, Maria and Monoranu, Camelia M. and Kessler, Almuth F. and Matthies, Cordula and L{\"o}hr, Mario and Hagemann, Carsten and Schirbel, Andreas and Rowe, Steven P. and Pomper, Martin G. and Buck, Andreas K. and Wester, Hans-J{\"u}rgen and Ernestus, Ralf-Ingo and Lapa, Constantin}, title = {[\(^{68}\)Ga]-Pentixafor PET/CT for CXCR4-mediated imaging of vestibular schwannomas}, series = {Frontiers in Oncology}, volume = {9}, journal = {Frontiers in Oncology}, number = {503}, doi = {10.3389/fonc.2019.00503}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201863}, year = {2019}, abstract = {We have recently demonstrated CXCR4 overexpression in vestibular schwannomas (VS). This study investigated the feasibility of CXCR4-directed positron emission tomography/computed tomography (PET/CT) imaging of VS using the radiolabeled chemokine ligand [\(^{68}\)Ga]Pentixafor. Methods: 4 patients with 6 primarily diagnosed or pre-treated/observed VS were enrolled. All subjects underwent [\(^{68}\)Ga]Pentixafor PET/CT prior to surgical resection. Images were analyzed visually and semi-quantitatively for CXCR4 expression including calculation of tumor-to-background ratios (TBR). Immunohistochemistry served as standard of reference in three patients. Results: [\(^{68}\)Ga]Pentixafor PET/CT was visually positive in all cases. SUV\(_{mean}\) and SUV\(_{max}\) were 3.0 ± 0.3 and 3.8 ± 0.4 and TBR\(_{mean}\) and TBR\(_{max}\) were 4.0 ± 1.4 and 5.0 ± 1.7, respectively. Histological analysis confirmed CXCR4 expression in tumors. Conclusion: Non-invasive imaging of CXCR4 expression using [\(^{68}\)Ga]Pentixafor PET/CT of VS is feasible and could prove useful for in vivo assessment of CXCR4 expression.}, language = {en} } @article{LoehrKesslerMonoranuetal.2019, author = {L{\"o}hr, Mario and Kessler, Almuth F. and Monoranu, Camelia-Maria and Grosche, Jens and Linsenmann, Thomas and Ernestus, Ralf-Ingo and H{\"a}rtig, Wolfgang}, title = {Primary brain amyloidoma, both a neoplastic and a neurodegenerative disease: a case report}, series = {BMC Neurology}, volume = {19}, journal = {BMC Neurology}, doi = {10.1186/s12883-019-1274-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200341}, pages = {59}, year = {2019}, abstract = {Background Scattered extracellular deposits of amyloid within the brain parenchyma can be found in a heterogeneous group of diseases. Its condensed accumulation in the white matter without evidence for systemic amyloidosis is known as primary brain amyloidoma (PBA). Although originally considered as a tumor-like lesion by its space-occupying effect, this condition displays also common hallmarks of a neurodegenerative disorder. Case presentation A 50-year-old woman presented with a mild cognitive decline and seizures with a right temporal, irregular and contrast-enhancing mass on magnetic resonance imaging. Suspecting a high-grade glioma, the firm tumor was subtotally resected. Neuropathological examination showed no glioma, but distinct features of a neurodegenerative disorder. The lesion was composed of amyloid AL λ aggregating within the brain parenchyma as well as the adjacent vessels, partially obstructing the vascular lumina. Immunostaining confirmed a distinct perivascular inflammatory reaction. After removal of the PBA, mnestic impairments improved considerably, the clinical course and MRI-results are stable in the 8-year follow-up. Conclusion Based on our histopathological findings, we propose to regard the clinicopathological entity of PBA as an overlap between a neoplastic and neurodegenerative disorder. Since the lesions are locally restricted, they might be amenable to surgery with the prospect of a definite cure.}, language = {en} } @article{FeldheimKesslerMonoranuetal.2019, author = {Feldheim, Jonas and Kessler, Almuth F. and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Changes of O\(^6\)-Methylguanine DNA Methyltransferase (MGMT) promoter methylation in glioblastoma relapse—a meta-analysis type literature review}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {12}, issn = {2072-6694}, doi = {10.3390/cancers11121837}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193040}, year = {2019}, abstract = {Methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter has emerged as strong prognostic factor in the therapy of glioblastoma multiforme. It is associated with an improved response to chemotherapy with temozolomide and longer overall survival. MGMT promoter methylation has implications for the clinical course of patients. In recent years, there have been observations of patients changing their MGMT promoter methylation from primary tumor to relapse. Still, data on this topic are scarce. Studies often consist of only few patients and provide rather contrasting results, making it hard to draw a clear conclusion on clinical implications. Here, we summarize the previous publications on this topic, add new cases of changing MGMT status in relapse and finally combine all reports of more than ten patients in a statistical analysis based on the Wilson score interval. MGMT promoter methylation changes are seen in 115 of 476 analyzed patients (24\%; CI: 0.21-0.28). We discuss potential reasons like technical issues, intratumoral heterogeneity and selective pressure of therapy. The clinical implications are still ambiguous and do not yet support a change in clinical practice. However, retesting MGMT methylation might be useful for future treatment decisions and we encourage clinical studies to address this topic}, language = {en} } @article{HagemannNeuhausDahlmannetal.2019, author = {Hagemann, Carsten and Neuhaus, Nikolas and Dahlmann, Mathias and Kessler, Almuth F. and Kobelt, Dennis and Herrmann, Pia and Eyrich, Matthias and Freitag, Benjamin and Linsenmann, Thomas and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Stein, Ulrike}, title = {Circulating MACC1 transcripts in glioblastoma patients predict prognosis and treatment response}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {6}, issn = {2072-6694}, doi = {10.3390/cancers11060825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197327}, year = {2019}, abstract = {Glioblastoma multiforme is the most aggressive primary brain tumor of adults, but lacksreliable and liquid biomarkers. We evaluated circulating plasma transcripts of metastasis-associatedin colon cancer-1 (MACC1), a prognostic biomarker for solid cancer entities, for prediction of clinicaloutcome and therapy response in glioblastomas. MACC1 transcripts were significantly higher inpatients compared to controls. Low MACC1 levels clustered together with other prognosticallyfavorable markers. It was associated with patients' prognosis in conjunction with the isocitratedehydrogenase (IDH) mutation status: IDH1 R132H mutation and low MACC1 was most favorable(median overall survival (OS) not yet reached), IDH1 wildtype and high MACC1 was worst (medianOS 8.1 months), while IDH1 wildtype and low MACC1 was intermediate (median OS 9.1 months).No patients displayed IDH1 R132H mutation and high MACC1. Patients with low MACC1 levelsreceiving standard therapy survived longer (median OS 22.6 months) than patients with high MACC1levels (median OS 8.1 months). Patients not receiving the standard regimen showed the worstprognosis, independent of MACC1 levels (low: 6.8 months, high: 4.4 months). Addition of circulatingMACC1 transcript levels to the existing prognostic workup may improve the accuracy of outcomeprediction and help define more precise risk categories of glioblastoma patients.}, language = {en} } @article{LapaLueckerathKleinleinetal.2016, author = {Lapa, Constantin and L{\"u}ckerath, Katharina and Kleinlein, Irene and Monoranu, Camelia Maria and Linsenmann, Thomas and Kessler, Almuth F. and Rudelius, Martina and Kropf, Saskia and Buck, Andreas K. and Ernestus, Ralf-Ingo and Wester, Hans-J{\"u}rgen and L{\"o}hr, Mario and Herrmann, Ken}, title = {\(^{68}\)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma}, series = {Theranostics}, volume = {6}, journal = {Theranostics}, number = {3}, doi = {10.7150/thno.13986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168174}, pages = {428-434}, year = {2016}, abstract = {Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand \(^{68}\)Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent \(^{68}\)Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-\(^{18}\)F-fluoroethyl)-L-tyrosine (\(^{18}\)F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUV\(_{max}\), SUV\(_{mean}\)). Tumor-to-background ratios (TBR) were calculated for both PET probes. \(^{68}\)Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. \(^{68}\)Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUV\(_{mean}\) and SUV\(_{max}\) of 3.0±1.5 and 3.9±2.0 respectively. Respective values for \(^{18}\)F-FET were 4.4±2.0 (SUV\(_{mean}\)) and 5.3±2.3 (SUV\(_{max}\)). TBR for SUV\(_{mean}\) and SUV\(_{max}\) were higher for \(^{68}\)Ga-Pentixafor than for \(^{18}\)F-FET (SUV\(_{mean}\) 154.0±90.7 vs. 4.1±1.3; SUV\(_{max}\) 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high \(^{68}\)Ga-Pentixafor uptake; regions of the same tumor without apparent \(^{68}\)Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, \(^{68}\)Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, \(^{68}\)Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy.}, language = {en} } @article{FeldheimKesslerSchmittetal.2018, author = {Feldheim, Jonas and Kessler, Almuth F and Schmitt, Dominik and Wilczek, Lara and Linsenmann, Thomas and Dahlmann, Mathias and Monoranu, Camelia M and Ernestus, Ralf-Ingo and Hagemann, Carsten and L{\"o}hr, Mario}, title = {Expression of activating transcription factor 5 (ATF5) is increased in astrocytomas of different WHO grades and correlates with survival of glioblastoma patients}, series = {OncoTargets and Therapy}, volume = {11}, journal = {OncoTargets and Therapy}, doi = {10.2147/OTT.S176549}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177541}, pages = {8673-8684}, year = {2018}, abstract = {Background: ATF5 suppresses differentiation of neuroprogenitor cells and is overexpressed in glioblastoma (GBM). A reduction of its expression leads to apoptotic GBM cell death. Data on ATF5 expression in astrocytoma WHO grade II (low-grade astrocytoma [LGA]) are scarce and lacking on recurrent GBM. Patients and methods: ATF5 mRNA was extracted from frozen samples of patients' GBM (n=79), LGA (n=40), and normal brain (NB, n=10), quantified by duplex qPCR and correlated with retrospectively collected clinical data. ATF5 protein expression was evaluated by measuring staining intensity on immunohistochemistry. Results: ATF5 mRNA was overexpressed in LGA (sevenfold, P<0.001) and GBM (tenfold, P<0.001) compared to NB, which was confirmed on protein level. Although ATF5 mRNA expression in GBM showed a considerable fluctuation range, groups of varying biological behavior, that is, local/multifocal growth or primary tumor/relapse and the tumor localization at diagnosis, were not significantly different. ATF5 mRNA correlated with the patients' age (r=0.339, P=0.028) and inversely with Ki67-staining (r=-0.421, P=0.007). GBM patients were allocated to a low and a high ATF5 expression group by the median ATF5 overexpression compared to NB. Kaplan-Meier analysis and Cox regression indicated that ATF5 mRNA expression significantly correlated with short-term survival (t<12 months, median survival 18 vs 13 months, P=0.022, HR 2.827) and progression-free survival (PFS) (12 vs 6 months, P=0.024). This advantage vanished after 24 months (P=0.084). Conclusion: ATF5 mRNA expression could be identified as an additional, though not independent factor correlating with overall survival and PFS. Since its inhibition might lead to the selective death of glioma cells, it might serve as a potential ubiquitous therapeutic target in astrocytic tumors.}, language = {en} } @article{LinsenmannMonoranuVinceetal.2014, author = {Linsenmann, Thomas and Monoranu, Camelia M. and Vince, Giles H. and Westermaier, Thomas and Hagemann, Carsten and Kessler, Almuth F. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario}, title = {Long-term tumor control of spinal dissemination of cerebellar glioblastoma multiforme by combined adjuvant bevacizumab antibody therapy: a case report}, doi = {10.1186/1756-0500-7-496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110536}, year = {2014}, abstract = {Background Glioblastoma multiforme located in the posterior fossa is extremely rare with a frequency up to 3.4\%. Compared with glioblastoma of the hemispheres the prognosis of infratentorial glioblastoma seems to be slightly better. Absence of brainstem invasion and low expression rates of epidermal growth factor receptor are described as factors for long-time survival due to the higher radiosensitivity of these tumors. Case presentation In this case study, we report a German female patient with an exophytic glioblastoma multiforme arising from the cerebellar tonsil and a secondary spinal manifestation. Furthermore, the tumor showed no O (6)-Methylguanine-DNA methyltransferase promotor-hypermethylation and no isocitrate dehydrogenase 1 mutations. All these signs are accompanied by significantly shorter median overall survival. A long-term tumor control of the spinal metastases was achieved by a combined temozolomide/bevacizumab and irradiation therapy, as part of a standard care administered by the treating physician team. Conclusion To our knowledge this is the first published case of a combined cerebellar exophytic glioblastoma with a subsequent solid spinal manifestation. Furthermore this case demonstrates a benefit undergoing this special adjuvant therapy regime in terms of overall survival. Due to the limited overall prognosis of the disease, spinal manifestations of glioma are rarely clinically relevant. The results of our instructive case, however, with a positive effect on both life quality and survival warrant treating future patients in the frame of a prospective clinical study.}, language = {en} }