@phdthesis{Suchomel2022, author = {Suchomel, Holger Maximilian}, title = {Entwicklung elektrooptischer Bauteile auf der Basis von Exziton-Polaritonen in Halbleiter-Mikroresonatoren}, doi = {10.25972/OPUS-27163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Exziton-Polaritonen (Polaritonen), hybride Quasiteilchen, die durch die starke Kopplung von Quantenfilm-Exzitonen mit Kavit{\"a}tsphotonen entstehen, stellen auf Grund ihrer vielseitigen und kontrollierbaren Eigenschaften einen vielversprechenden Kandidaten f{\"u}r die Entwicklung einer neuen Generation von nichtlinearen und integrierten elektrooptischen Bauteilen dar. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung und Untersuchung kompakter elektrooptischer Bauelemente auf der Basis von Exziton-Polaritonen in Halbleitermikrokavit{\"a}ten. Als erstes wird die Implementierung einer elektrisch angeregten, oberfl{\"a}chenemittierenden Polariton-Laserdiode vorgestellt, die ohne ein externes Magnetfeld arbeiten kann. Daf{\"u}r wird der Schichtaufbau, der Q-Faktor, das Dotierprofil und die RabiAufspaltung der Polariton-Laserdiode optimiert. Der Q-Faktor des finalen Aufbaus bel{\"a}uft sich auf Q ~ 16.000, w{\"a}hrend die Rabi-Aufspaltung im Bereich von ~ 11,0 meV liegt. Darauf aufbauend werden Signaturen der Polariton-Kondensation unter elektrischer Anregung, wie ein nichtlinearer Anstieg der Intensit{\"a}t, die Reduktion der Linienbreite und eine fortgesetzte Verschiebung der Emission zu h{\"o}heren Energien oberhalb der ersten Schwelle, demonstriert. Ferner werden die Koh{\"a}renzeigenschaften des Polariton-Kondensats mittels Interferenzspektroskopie untersucht. Basierend auf den optimierten Halbleiter-Mikroresonatoren wird eine Kontaktplattform f{\"u}r die elektrische Anregung ein- und zweidimensionaler Gitterstrukturen entwickelt. Dazu wird die Bandstrukturbildung eines Quadrat- und Graphen-Gitters unter elektrischer Anregung im linearen Regime untersucht und mit den Ergebnissen der optischen Charakterisierung verglichen. Die erhaltenen Dispersionen lassen sich durch das zugeh{\"o}rige Tight-Binding-Modell beschreiben. Ferner wird auch eine elektrisch induzierte Nichtlinearit{\"a}t in der Emission demonstriert. Die untersuchte Laser-Mode liegt auf der H{\"o}he des unteren Flachbandes und an der Position der Γ-Punkte in der zweiten Brillouin-Zone. Die zugeh{\"o}rige Modenstruktur weist die erwartete Kagome-Symmetrie auf. Abschließend wird die Bandstrukturbildung eines SSH-Gitters mit eingebautem Defekt unter elektrischer Anregung untersucht und einige Eigenschaften des topologisch gesch{\"u}tzten Defektzustandes gezeigt. Dazu geh{\"o}rt vor allem die Ausbildung der lokalisierten Defektmode in der Mitte der S-Bandl{\"u}cke. Die erhaltenen Ergebnisse stellen einen wichtigen Schritt in der Realisierung eines elektrisch betriebenen topologischen Polariton-Lasers dar. Abschließend wird ein elektrooptisches Bauteil auf der Basis von Polaritonen in einem Mikrodrahtresonator vorgestellt, in dem sich die Propagation eines PolaritonKondensats mittels eines elektrostatischen Feldes kontrollieren l{\"a}sst. Das Funktionsprinzip des Polariton-Schalters beruht auf der Kombination einer elektrostatischen Potentialsenke unterhalb des Kontaktes und der damit verbundenen erh{\"o}hten ExzitonIonisationsrate. Der Schaltvorgang wird sowohl qualitativ als auch quantitativ analysiert und die Erhaltenen Ergebnisse durch die Modellierung des Systems {\"u}ber die GrossPitaevskii-Gleichung beschrieben. Zus{\"a}tzlich wird ein negativer differentieller Widerstand und ein bistabiles Verhalten in der Strom-Spannungs-Charakteristik in Abh{\"a}ngigkeit von der Ladungstr{\"a}gerdichte im Kontaktbereich beobachtet. Dieses Verhalten wird auf gegenseitig konkurrierende Kondensats-Zust{\"a}nde innerhalb der Potentialsenke und deren Besetzung und damit direkt auf den r{\"a}umlichen Freiheitsgrad der PolaritonZust{\"a}nde zur{\"u}ckgef{\"u}hrt.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Betzold2022, author = {Betzold, Simon}, title = {Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisph{\"a}rischen Mikrokavit{\"a}ten mit eingebetteten organischen Halbleitern}, doi = {10.25972/OPUS-26665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266654}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Kavit{\"a}ts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavit{\"a}tsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits f{\"u}r die Grundlagenforschung, andererseits auch f{\"u}r die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand {\"u}ber, was zur Emission von laserartigem Licht f{\"u}hrt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorst{\"a}rken auch hohe Bindungsenergien aufweisen. Deshalb ist es m{\"o}glich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen {\"a}ußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte r{\"a}umliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit besch{\"a}ftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisph{\"a}rischen Mikrokavit{\"a}ten, in die organische Halbleiter eingebettet sind.}, subject = {Exziton-Polariton}, language = {de} } @phdthesis{Harder2022, author = {Harder, Tristan H.}, title = {Topological Modes and Flatbands in Microcavity Exciton-Polariton Lattices}, doi = {10.25972/OPUS-25900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259008}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination of advanced technological control over both the III-V semiconductor material platform as well as the precise spectroscopic access to polaritonic states, which provide access to the investigation of open questions and complex phenomena due to the inherent nonlinearity and direct spectroscopic observables such as energy-resolved real and Fourier space information, pseudospin and coherence. The focus of this work was to advance the research area of polariton lattice simulators with a particular emphasis on their lasing properties. Following the brief introduction into the fundamental physics of polariton lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier spectroscopy techniques used to investigate various features of these lattices were summarized in chapter 3. Here, the implementation of a spatial light modulator for advanced excitation schemes was presented. At the foundation of this work is the capability to confine polaritons into micropillars or microtraps resulting in discrete energy levels. By arranging these pillars or traps into various lattice geometries and ensuring coupling between neighbouring sites, polaritonic band structures were engineered. In chapter 4, the formation of a band structure was visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition of the discrete energy levels of a single chain of microtraps to the fully developed band structure of a honeycomb lattice was observed. This study allows to design the size of individual domains in more complicated lattice geometries such that a description using band structures becomes feasible, as it revealed that a width of just six unit cells is sufficient to reproduce all characteristic features of the S band of a honeycomb lattice. In particular in the context of potential technological applications in the realms of lasing, the laser-like, coherent emission from polariton microcavities that can be achieved through the excitation of polariton condensates is intriguing. The condensation process is significantly altered in a lattice potential environment when compared to a planar microcavity. Therefore, an investigation of the polariton condensation process in a lattice with respect to the characteristics of the excitation laser, the exciton-photon detuning as well as the reduced trap distance that represents a key design parameter for polaritonic lattices was performed. Based on the demonstration of polariton condensation into multiple bands, the preferred condensation into a desired band was achieved by selecting the appropriate detuning. Additionally, a decreased condensation threshold in confined systems compared to a planar microcavity was revealed. In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice geometries, such as the Lieb and Kagome lattices, on polaritons and polariton condensates was investigated. Deviations from a lattice simulator described by a tight binding model that is solely based on nearest neighbour coupling cause a remaining dispersiveness of the flatbands along certain directions of the Brillouin zone. Therefore, the influence of the reduced trap distance on the dispersiveness of the flatbands was investigated and precise technological control over the flatbands was demonstrated. As next-nearest neighbour coupling is reduced drastically by increasing the distance between the corresponding traps, increasing the reduced trap distance enables to tune the S flatbands of both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth on the order of the polariton linewidth. Additionally to technological control over the band structures, the controlled excitation of large condensates, single compact localized state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flatband were demonstrated. Furthermore, selective condensation into flatbands was realised. This combination of technological and spectroscopic control illustrates the capabilities of polariton lattice simulators and was used to study the coherence of flatband polariton condensates. Here, the ability to tune the dispersiveness from a dispersive band to an almost perfect flatband in combination with the selectivity of the excitation is particularly valuable. By exciting large flatband condensates, the increasing degree of localisation to a CLS with decreasing dispersiveness was demonstrated by measurements of first order spatial coherence. Furthermore, the first order temporal coherence of CLS condensates was increased from τ = 68 ps for a dispersive flatband, a value typically achieved in high-quality microcavity samples, to a remarkable τ = 459 ps in a flatband with a dispersiveness below the polarion linewidth. Corresponding to this drastic increase of the first order coherence time, a decrease of the second order temporal coherence function from g(2)(τ =0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emission, polariton condensates can form vortex lattices. In this work, two distinct vortex lattices that can form in polariton condensates in Kagome flatbands were revealed. Furthermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry through a localised excitation spot. This chirality was related to a change in the vortex orientation at the edge of the lattice and thus opens the path towards further investigations of symmetry breaking and chiral superfluid transport in Kagome lattices. Arguably the most influential concept in solid-state physics of the recent decades is the idea of topological order that has also provided a new degree of freedom to control the propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial band structures with polaritons, polariton condensates and lasing was emphasised. Firstly, a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice was realised. Here, a topologically non-trivial band gap was opened at the Dirac points through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of the excitonic mode. While the band gap is too small compared to the linewidth to be observed in the linear regime, the excitation of polariton condensates allowed to observe the characteristic, topologically protected, chiral edge modes that are robust against scattering at defects as well as lattice corners. This result represents a valuable step towards the investigation of non-linear and non-Hermitian topological physics, based on the inherent gain and loss of microcavities as well as the ability of polaritons to interact with each other. Apart from fundamental interest, the field of topological photonics is driven by the search of potential technological applications, where one direction is to advance the development of lasers. In this work, the starting point towards studying topological lasing was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood geometry with a large topological gap. The coherence properties of the topological edge defect of an SSH chain was studied in detail, revealing a promising degree of second order temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d = 3.5 µm. In the context of topological lasing, the idea of using a propagating, topologically protected mode to ensure coherent coupling of laser arrays is particularly promising. Here, a topologically non-trivial interface mode between the two distinct domains of the crystalline topological insulator (CTI) was realised. After establishing selective lasing from this mode, the coherence properties were studied and coherence of a full, hexagonal interface comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated. This result thus represents the first demonstration of a topological insulator VCSEL array, combining the compact size and convenient light collection of vertically emitting lasers with an in-plane topological protection. Finally, in chapter 7, an approach towards engineering the band structures of Lieb and honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was presented. For Lieb lattices, this technique opens up a path towards controlling the coupling of a flatband to dispersive bands and could enable a detailed study of the influence of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice, a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb domains with permuted sites in the unit cells was demonstrated. This boundary mode could serve as the foundation for the realisation of a polariton quantum valley Hall effect with a truly topologically protected spin based on vortex charges. Modifying polariton lattices by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified as an additional, promising path for the future development of polariton lattice simulators.}, subject = {Exziton-Polariton}, language = {en} } @phdthesis{Brodbeck2020, author = {Brodbeck, Sebastian}, title = {Elektrische und magnetische Felder zur Untersuchung und Manipulation von Exziton-Polaritonen}, doi = {10.25972/OPUS-20739}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Starke Licht-Materie-Wechselwirkung in Halbleiter-Mikroresonatoren f{\"u}hrt zur Ausbildung von Eigenmoden mit gemischtem Licht-Materie-Charakter, die als Polaritonen bezeichnet werden. Die besonderen Eigenschaften dieser bosonischen Quasiteilchen k{\"o}nnen zur Realisierung neuartiger Bauteile genutzt werden, wie etwa des Polariton-Lasers, der auf stimulierter Streuung beruht anstatt auf stimulierter Emission, durch die Photon-Lasing ausgel{\"o}st wird. Durch den direkten Zugang zu Polariton-Zust{\"a}nden in spektroskopischen Experimenten, sowie durch die M{\"o}glichkeit mit vielf{\"a}ltigen Mitteln nahezu beliebige Potentiallandschaften definieren zu k{\"o}nnen, er{\"o}ffnen sich zahlreiche weitere Anwendungsgebiete, etwa in der Quantensimulation bzw. -emulation. Mittels externer elektrischer und magnetischer Felder k{\"o}nnen Erkenntnisse {\"u}ber Polaritonen gewonnen werden, die in rein optischen Experimenten nicht zug{\"a}nglich sind. Durch die Felder, die nicht mit rein photonischen Moden wechselwirken, kann auf den Materie-Anteil der Hybridmoden zugegriffen werden. Weiterhin k{\"o}nnen die Felder zur in-situ Manipulation der Polariton-Energie genutzt werden, was f{\"u}r die Erzeugung dynamischer Potentiale relevant werden k{\"o}nnte. Der Fokus dieser Arbeit liegt daher auf der Betrachtung verschiedener Ph{\"a}nomene der Licht-Materie-Wechselwirkung unter dem Einfluss {\"a}ußerer Felder. Dazu wurden auf das jeweilige Experiment abgestimmte Strukturen und Bauteile hergestellt und in magneto-optischen oder elektro-optischen Messungen untersucht. Um elektrische Felder entlang der Wachstumsrichtung anlegen zu k{\"o}nnen, d.h. in vertikaler Geometrie, wurden dotierte Resonatoren verwendet, die mit elektrischen Kontakten auf der Probenoberfl{\"a}che und -r{\"u}ckseite versehen wurden. In diesen Bauteilen wurde die Energieverschiebung im elektrischen Feld untersucht, der sogenannte Stark-Effekt. Dieser im linearen Regime bereits mehrfach demonstrierte Effekt wurde systematisch auf den nichtlinearen Bereich des Polariton-Lasings erweitert. Dabei wurde besonderes Augenmerk auf die Probengeometrie und deren Einfluss auf die beobachteten Energieverschiebungen gelegt. Die Untersuchungen von Proben mit planarer, semi-planarer und Mikrot{\"u}rmchen-Geometrie zeigen, dass ein lateraler Einschluss der Ladungstr{\"a}ger, wie er im Mikrot{\"u}rmchen erzielt wird, zu einer Umkehrung der Energieverschiebung f{\"u}hrt. W{\"a}hrend in dieser Geometrie mit zunehmender Feldst{\"a}rke eine Blauverschiebung des unteren Polaritons gemessen wird, die durch Abschirmungseffekte erkl{\"a}rt werden kann, wird in planarer und semi-planarer Geometrie die erwartete Rotverschiebung beobachtet. In beiden F{\"a}llen k{\"o}nnen, je nach Verstimmung, Energieverschiebungen im Bereich von einigen hundert µeV gemessen werden. Die gemessenen Energieverschiebungen zeigen gute {\"U}bereinstimmung mit den Werten, die nach einem Modell gekoppelter Oszillatoren berechnet wurden. Weiterhin werden vergleichbare Energieverschiebungen unter- und oberhalb der Schwelle zum Polariton-Lasing beobachtet, sodass der Polariton-Stark-Effekt als eindeutiges Merkmal erachtet werden kann, anhand dessen optisch angeregte Polariton- und Photon-Laser eindeutig unterschieden werden k{\"o}nnen. Wird das elektrische Feld nicht entlang der Wachstumsrichtung angelegt, sondern senkrecht dazu in der Ebene der Quantenfilme, dann kommt es schon bei geringen Feldst{\"a}rken zur Feldionisation von Elektron-Loch-Paaren. Um diese Feldgeometrie zu realisieren, wurde ein Verfahren entwickelt, bei dem Kontakte direkt auf die durch einen {\"A}tzvorgang teilweise freigelegten Quantenfilme eines undotierten Mikroresonators aufgebracht werden. Durch das Anlegen einer Spannung zwischen den lateralen Kontakten kann die Polariton-Emission unterdr{\"u}ckt werden, wobei sich die Feldabh{\"a}ngigkeit der Polariton-Besetzung durch ein Modell gekoppelter Ratengleichungen reproduzieren l{\"a}sst. Die neuartige Kontaktierung erlaubt es weiterhin den Photostrom in den Quantenfilmen zu untersuchen, der proportional zur Dichte freier Ladungstr{\"a}ger ist. Dadurch l{\"a}sst sich zeigen, dass die zwei Schwellen mit nichtlinearem Anstieg der Emission, die in derartigen Proben h{\"a}ufig beobachtet werden, auf grunds{\"a}tzlich verschiedene Verst{\"a}rkungsmechanismen zur{\"u}ckgehen. An der zweiten Schwelle wird ein Abknicken des leistungsabh{\"a}ngigen Photostroms beobachtet, da dort freie Ladungstr{\"a}ger als Reservoir des Photon-Lasings dienen, deren Dichte an der Schwelle teilweise abgeklemmt wird. Die erste Schwelle hingegen, die dem Polariton-Lasing zugeordnet wird, hat keinen Einfluss auf den linear mit der Anregungsleistung ansteigenden Photostrom, da dort gebundene Elektron-Loch-Paare als Reservoir dienen. Mittels angepasster Ratengleichungsmodelle f{\"u}r Polariton- und Photon-Laser l{\"a}sst sich der ermittelte Verlauf der Ladungstr{\"a}gerdichte {\"u}ber den gesamten Leistungsbereich qualitativ reproduzieren. Abschließend wird durch ein magnetisches Feld der Einfluss der Licht-Materie-Wechselwirkung auf die Elektron-Loch-Bindung im Regime der sehr starken Kopplung beleuchtet. Durch die Messung der diamagnetischen Verschiebung wird der mittlere Elektron-Loch-Abstand von unterem und oberem Polariton f{\"u}r zwei Resonatoren mit unterschiedlich starker Licht-Materie-Wechselwirkung bestimmt. Bei geringer Kopplungsst{\"a}rke werden die Hybridmoden in guter N{\"a}herung als Linearkombinationen der ungekoppelten Licht- und Materie-Moden beschrieben. F{\"u}r den Resonator mit großer Kopplungsst{\"a}rke wird eine starke Asymmetrie zwischen unterem und oberem Polariton beobachtet. Die diamagnetische Verschiebung des oberen Polaritons steigt mit zunehmender Verstimmung auf bis etwa 2,1 meV an, was fast eine Gr{\"o}ßenordnung {\"u}ber der Verschiebung des unteren Polaritons (0,27 meV) bei derselben Verstimmung liegt und die Verschiebung des ungekoppelten Quantenfilms um mehr als den Faktor 2 {\"u}bersteigt. Das bedeutet, dass das untere Polariton durch eine Wellenfunktion beschrieben wird, dessen Materie-Anteil einen verringerten mittleren Elektron-Loch-Abstand aufweist. Im oberen Polariton ist dieser mittlere Radius deutlich gr{\"o}ßer als der eines Elektron-Loch-Paars im ungekoppelten Quantenfilm, was sich durch eine von Photonen vermittelte Wechselwirkung mit angeregten und Kontinuumszust{\"a}nden des Quantenfilms erkl{\"a}ren l{\"a}sst.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Lundt2019, author = {Lundt, Nils}, title = {Strong light-matter coupling with 2D materials}, doi = {10.25972/OPUS-18733}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187335}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This publication is dedicated to investigate strong light-matter coupling with excitons in 2D materials. This work starts with an introduction to the fundamentals of excitons in 2D materials, microcavities and strong coupling in chapter 2. The experimental methods used in this work are explained in detail in chapter 3. Chapter 4 covers basic investigations that help to select appropriate materials and cavities for the following experiments. In chapter 5, results on the formation of exciton-polaritons in various materials and cavity designs are presented. Chapter 6 covers studies on the spin-valley properties of exciton-polaritons including effects such as valley polarization, valley coherence and valley-dependent polariton propagation. Finally, the formation of hybrid-polaritons and their condensation are presented in chapter 7.}, subject = {Exziton-Polariton}, language = {en} } @phdthesis{Klaas2019, author = {Klaas, Martin}, title = {Spektroskopische Untersuchungen an elektrisch und optisch erzeugten Exziton-Polariton-Kondensaten}, doi = {10.25972/OPUS-17689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176897}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Eine technologisch besonders vielversprechende Art von Mikrokavit{\"a}ten besteht aus einem optisch aktiven Material zwischen zwei Spiegeln, wobei das Licht auf Gr{\"o}ße seiner Wellenl{\"a}nge eingesperrt wird. Mit diesem einfachen Konzept Licht auf Chipgr{\"o}ße einzufangen entstand die M{\"o}glichkeit neue Ph{\"a}nomene der Licht-Materie Wechselwirkung zu studieren. Der Oberfl{\"a}chenemitter (VCSEL), welcher sich das ver{\"a}nderte Strahlungsverhalten aufgrund der schwachen Kopplung und stimulierten Emission zu Nutze macht, ist bereits l{\"a}nger kommerziell sehr erfolgreich. Er umfasst ein erwartetes Marktvolumen von ca. 5.000 Millionen Euro bis 2024, welches sich auf verschiedenste Anwendungen im Bereich von Sensorik und Kommunikationstechnologie bezieht. Dauerhaft hohe Wachstumsraten von 15-20\% pro Jahr lassen auf weiteres langfristiges Potential von Mikrokavit{\"a}ten in der technologischen Gesellschaft der n{\"a}chsten Generation hoffen. Mit fortschreitender Entwicklung der Epitaxie-Verfahren gelang es Kavit{\"a}ten solcher Qualit{\"a}t herzustellen, dass zum ersten Mal das Regime der starken Kopplung erreicht wurde. Starke Kopplung bedeutet in diesem Fall die Bildung eines neuen Quasiteilchens zwischen Photon und Exziton, dem Exziton-Polariton (Polariton). Dieses Quasiteilchen zeigt eine Reihe interessanter Eigenschaften, welche sowohl aus der Perspektive der Technologie, als auch aus der Sicht von Grundlagenforschung interessant sind. Bei systemabh{\"a}ngigen Teilchendichten erlaubt das Polariton ebenfalls die Erzeugung von koh{\"a}rentem Licht {\"u}ber den Exziton-Polariton-Kondensatszustand (Kondensat), den Polariton-Laser. Die Eigenschaften des emittierten Lichtes {\"a}hneln denen eines VCSELs, allerdings bei einigen Gr{\"o}ßenordnungen geringerem Energieverbrauch, bzw. niedrigerer Laserschwelle, bei Wahl geeigneter Verstimmung von Exziton und Photon. Diese innovative Entwicklung kann daher unter anderem neue M{\"o}glichkeiten f{\"u}r besonders energiesparende Anwendungen in der Photonik er{\"o}ffnen. Die vorliegende Doktorarbeit soll zur Erweiterung des Forschungsstandes in diesem Gebiet zwischen Photonik und Festk{\"o}rperphysik beitragen und untersucht zum einen den anwendungsorientierten Teil des Feldes mit Studien zur elektrischen Injektion, beleuchtet aber auch den interessanten Phasen{\"u}bergang des Systems {\"u}ber seine Koh{\"a}renz- und Spineigenschaften. Es folgt eine knappe {\"u}berblicksartige Darstellung der Ergebnisse, die in dieser Arbeit genauer ausgearbeitet werden. Rauschanalyse und die optische Manipulation eines bistabilen elektrischen Polariton-Bauelements Aufbauend auf der Realisierung eines elektrischen Polariton-Lasers wurde in dieser Arbeit ein optisches Potential in das elektrisch betriebene Kondensat mit einem externen Laser induziert. Dieses optische Potential erm{\"o}glicht die Manipulation der makroskopischen Besetzung der Grundzustandswellenfunktion, welches sich als ver{\"a}ndertes Emissionsbild im Realraum darstellt. Der polaritonische Effekt wird {\"u}ber Verschiebung der Emissionslinie zu h{\"o}heren Energien durch Wechselwirkung des Exzitonanteils nachgewiesen. Diese experimentellen Beobachtungen konnten mit Hilfe eines Gross-Pitaevskii-Differentialgleichungsansatzes erl{\"a}utert und theoretisch nachgebildet werden. Weiterhin zeigt der elektrische Polariton-Laser eine Bistabilit{\"a}t in seiner Emissionskennlinie an der polaritonischen Kondensationsschwelle. Die Hysterese hat ihren physikalischen Ursprung in der Lebenszeitabh{\"a}ngigkeit der Ladungstr{\"a}ger von der Dichte des Ladungstr{\"a}gerreservoirs durch die progressive Abschirmung des inneren elektrischen Feldes. In dieser Arbeit wird zum tieferen Verst{\"a}ndnis der Hysterese ein elektrisches Rauschen {\"u}ber den Anregungsstrom gelegt. Dieses elektrische Rauschen befindet sich auf der Mikrosekunden-Zeitskala und beeinflusst die Emissionscharakteristik, welche durch die Lebensdauer der Polaritonen im ps-Bereich bestimmt wird. Mit steigendem Rauschen wird ein Zusammenfall der Hysterese beobachtet, bis die Emissionscharakteristik monostabil erscheint. Diese experimentellen Befunde werden mit einem gekoppelten Ratengleichungssystem sowie mit Hilfe einer Gauss-verteilten Zufallsvariable in der Anregung modelliert und erkl{\"a}rt. Die Hysterese erm{\"o}glicht außerdem den Nachweis eines optischen Schalteffekts {\"u}ber eine zus{\"a}tzliche Ladungstr{\"a}gerinjektion mit einem Laser weit {\"u}ber der Bandkante des Systems, um den positiven R{\"u}ckkopplungseffekt zu erzeugen. Im Bereich der Hysterese wird das System auf den unteren Zustand elektrisch angeregt und dann mit Hilfe eines nicht-resonanten Laserpulses in den Kondensatszustand gehoben. Polaritonfluss geleitet durch Kontrolle der lithographisch definierten Energielandschaft Polaritonen k{\"o}nnen durch den photonischen Anteil weiterhin in Wellenleiterstrukturen eingesperrt werden, worin sie bei der Kondensation gerichtet entlang des Kanals mit nahe Lichtgeschwindigkeit fließen. Dies geschieht mit der Besonderheit {\"u}ber ihren Exzitonanteil stark wechselwirken zu k{\"o}nnen. Die M{\"o}glichkeit durch Lithographie solche eindimensionalen Kan{\"a}le zu definieren, wurde bereits in verschiedenen Prototypen f{\"u}r Polaritonen benutzt und untersucht. In dieser Arbeit werden zwei verschiedene, neue Ans{\"a}tze zur Lenkung von gerichtetem Polaritonfluss vorgestellt: zum einen {\"u}ber die sogenannte Josephson-Kopplung zwischen zwei Wellenleitern, realisiert {\"u}ber halbge{\"a}tzte Spiegel und zum anderen {\"u}ber eine Mikroscheibe gekoppelt an zwei Wellenleiter. Der Begriff der Josephson-Kopplung ist hier angelehnt an den bekannten Effekt in Supraleitern, welcher ph{\"a}nomenologische {\"A}hnlichkeiten aufweist. Die Verwendung in der Polaritonik ist historisch gewachsen. Die Josephson-Kopplung erm{\"o}glicht die Beobachung von Oszillationen des Polariton-Kondensats zwischen den Wellenleitern, in Abh{\"a}ngigkeit der verbleibenden Anzahl Spiegelpaare zwischen den Strukturen, wodurch eine definierte Selektion des Auskopplungsarms erm{\"o}glicht wird. Die Mikroscheibe funktioniert {\"a}hnlich einer Resonanztunneldiode. Sie erm{\"o}glicht eine Energieselektion der transmittierten Moden durch die Diskretisierung der Zust{\"a}nde in den niederdimensionalen Strukturen. Es ergibt sich die Bedingung, dass nur energetisch gleiche Niveaus zwischen Struktur{\"u}berg{\"a}ngen koppeln k{\"o}nnen. Gleichzeitig erlaubt die Mikroscheibenanordnung eine Umkehrung der Flussrichtung. Koh{\"a}renzeigenschaften und die Photonenstatistik von Polariton-Kondensaten unter photonischen Einschlusspotentialen Die Koh{\"a}renzeigenschaften der Emission von Polariton-Kondensaten ist seit l{\"a}ngerem ein aktives Forschungsfeld. Die noch ausstehenden Fragen betreffen die Beobachtung hoher Abweichungen von traditionellen, auf Inversion basierenden Lasersystemen (z.B. VCSELs). Diese haben selbst bei schwellenlosen Lasern einen Wert der Autokorrelationsfunktion zweiter Ordnung von Eins. Polariton-Kondensate jedoch zeigen erh{\"o}hte Werte in der Autokorrelationsfunktion, welches auf einen Mischzustand zwischen koh{\"a}rentem und thermischem Licht hinweist. In dieser Arbeit wurde ein systematischer Weg untersucht, die Koh{\"a}renzeigenschaften des Polariton-Kondensats denen eines traditionellen Lasers anzun{\"a}hern. Dies geschieht {\"u}ber den lateralen photonischen Einschluss der Kondensate mittels lithographisch definierter Mikrot{\"u}rmchen mit verschiedenen Durchmessern. In Koh{\"a}renzmessungen wird der Einfluss dieser Ver{\"a}nderung der Energielandschaft der Polariton-Kondensate auf die Autokorrelationseigenschaften zweiter Ordnung untersucht. Es wird ein direkter Zusammenhang zwischen großem Einschlusspotential und guten Korrelationseigenschaften nachgewiesen. Der Effekt wird theoretisch {\"u}ber den ver{\"a}nderten Einfluss der Phononen auf das Polariton-Relaxationsverhalten erkl{\"a}rt. Durch die st{\"a}rkere Lokalisierung der Polaritonwellenfunktion in kleineren Mikrot{\"u}rmchen wird die Streuwahrscheinlichkeit erh{\"o}ht, was eine effizientere Relaxation in den Grundzustand erm{\"o}glicht. Dies verhindert zu starke Besetzungsfluktuationen der Grundmode in der Polariton-Lebenszeit, was bisher als Grund f{\"u}r die erh{\"o}hte Autokorrelation postuliert wurde. Weiterhin wird eine direkte Messung der Photonenstatistik eines Polaritonkondensats entlang steigender Polaritondichte im Schwellbereich vorgestellt. Die Photonenstatistik eines thermischen Emitters zeigt einen exponentiellen Verlauf, w{\"a}hrend ein reiner Laser Poisson-verteilt emittiert. Der Zwischenbereich, der f{\"u}r einen Laser am {\"U}bergang zwischen thermischer und koh{\"a}renter Lichtquelle vorhergesagt wird, kann durch eine {\"U}berlagerung der beiden Zust{\"a}nde beschrieben werden. {\"U}ber eine Anpassungsfunktion der gemessenen Verteilungsfunktionen kann der Phasen{\"u}bergang des Kondensats mit Hilfe dem Anteil der koh{\"a}renten Partikel im System verfolgt werden. Dadurch, dass der gemessene {\"U}bergang dem Paradigma der thermisch-koh{\"a}renten Zust{\"a}nde folgt, wurde nachgewiesen, dass bei r{\"o}tlicher Verstimmung die Interaktionen keinen signifikanten Anteil an der Ausbildung von Koh{\"a}renz im Polaritonsystem spielen. Polarisationskontrolle von Polariton-Kondensaten Die Polarisationseigenschaften des durch Polaritonenzerfall emittierten Lichts korrespondieren zum Spinzustand der Quasiteilchen. Unterhalb der Kondensationsschwelle ist diese Emission durch Spin-Relaxation der Ladungstr{\"a}ger unpolarisiert und oberhalb der Schwelle bildet sich unter bestimmten Voraussetzungen lineare Polarisation als Ordnungsparameter des Phasen{\"u}bergangs aus. Der Prozess der stimulierten Streuung kann die (zirkulare) Polarisation des Lasers auch bei Anregung auf h{\"o}heren Energien auf dem unteren Polaritonast erhalten. Dies resultiert aus sehr schneller Einnahme des Grundzustands, welche eine Spin-Relaxation verhindert. Bisher wurde, nach unserem Kenntnisstand, nur teilweise Erhaltung zirkularer Polarisation unter nicht-resonanter Anregung beobachtet. In dieser Arbeit wird vollst{\"a}ndige zirkulare Polarisationserhaltung, energetisch 130 meV vom Kondensatszustand entfernt angeregt, nachgewiesen. Diese Polarisationserhaltung setzt an der Kondensationsschwelle ein, was auf den Erhalt durch stimulierte Streuung hinweist. Unter dieser Voraussetzung der Spinerhaltung erzeugt die linear polarisierte Anregung (als {\"U}berlagerung zirkularem Lichts beider Orientierungen) elliptisch polarisiertes Licht. Dies geschieht, weil eine linear polarisierte Anregung durch Fokussierung eines Objektivs leicht elliptisch wird. Der Grad der Elliptizit{\"a}t wird sowohl durch die Verstimmung zwischen Photon und Exziton Mode beeinflusst, als auch durch die Dichte im System. Dies kann erkl{\"a}rt werden {\"u}ber das spezielle Verhalten der Relaxationsprozesse auf dem unteren Polaritonast, welche von der transversal-elektrischen und transversal-magnetischen (TE-TM) energetischen Aufspaltung abh{\"a}ngen. Weiterhin werden elliptische Mikrot{\"u}rmchen untersucht, um den Einfluss dieses asymmetrischen photonischen Einschlusses auf die Kondensatseigenschaften herauszuarbeiten. Die Ellipse zwingt das Kondensat zu einer linearen Polarisation, welche sich entlang der langen Achse des T{\"u}rmchens ausrichtet. In asymmetrischen Mikrot{\"u}rmchen ist die Grundmode aufgespalten in zwei linear polarisierte Moden entlang der beiden orthogonal zueinander liegenden Hauptachsen, wobei die l{\"a}ngere Achse das linear polarisierte Energieminimum des Systems bildet. Der Grad der linearen Polarisation nimmt mit geringerem Mikrot{\"u}rmchendurchmesser und gr{\"o}ßerer Ellipzit{\"a}t zu. Dies geschieht durch erh{\"o}hten energetischen Abstand der beiden Moden. Bei Ellipsen mit einem langen Hauptachsendurchmesser von 2 Mikrometer und einem Achsenverh{\"a}ltnis von 3:2 kann ein nahezu vollst{\"a}ndig linear polarisierter Zustand eines Polariton-Kondensats nachgewiesen werden. Damit wurde erforscht, dass auch unter nicht-resonanter Anregung Exziton-Polariton-Kondensate experimentell und theoretisch jeglichen Spinzustand unter entsprechenden Anregungsbedingungen annehmen k{\"o}nnen.}, subject = {Exziton-Polariton}, language = {de} } @phdthesis{Fischer2015, author = {Fischer, Julian}, title = {Koh{\"a}renz- und Magnetfeldmessungen an Polariton-Kondensaten unterschiedlicher r{\"a}umlicher Dimensionen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149488}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die Bose-Einstein-Kondensation (BEK) und die damit verbundenen Effekte wie Superfluidit{\"a}t und Supraleitung sind faszinierende Resultate der Quantennatur von Bosonen. Nachdem die Bose-Einstein-Kondensation f{\"u}r Atom-Systeme nur bei Temperaturen nahe dem absoluten Nullpunkt realisierbar ist, was einen enormen technologischen Aufwand ben{\"o}tigt, wurden Bosonen mit wesentlich kleineren Massen zur Untersuchung der BEK gesucht. Hierf{\"u}r bieten sich Quasiteilchen in Festk{\"o}rpern wie Magnonen oder Exzitonen an, da deren effektive Massen sehr klein sind und die Kondensationstemperatur dementsprechend h{\"o}her ist als f{\"u}r ein atomares System. Ein weiteres Quasiteilchen ist das Exziton-Polariton als Resultat der starken Licht-Materie-Wechselwirkung in Halbleitermikrokavit{\"a}ten, welches sowohl Materie- als auch Photoneigenschaften hat und dessen Masse theoretisch eine BEK bis Raumtemperatur erlaubt. Ein weiterer Vorteil dieses System ist die einfache Erzeugung des Bose-Einstein-Kondensats in diesen Systemen durch elektrisches oder optisches Injizieren von Exzitonen in die Halbleiter-Quantenfilme der Struktur. Außerdem kann die Impulsraumverteilung dieser Quasiteilchen leicht durch einfache experimentelle Methoden mittels eines Fourierraumspektroskopie-Aufbaus bestimmt werden. Durch die winkelabh{\"a}ngige Messung der Emission kann direkt auf die Impulsverteilung der Exziton-Polaritonen in der Quantenfilmebene zur{\"u}ckgerechnet werden, die zur Identifikation der BEK hilfreich ist. Deshalb wird das Exziton-Polariton als ein Modellsystem f{\"u}r die Untersuchung von Bose-Einstein-Kondensation in Festk{\"o}rpern und den damit in Relation stehenden Effekten angesehen. In dieser Arbeit wird die Grundzustandskondensation von Exziton-Polaritonen in Halbleitermikrokavit{\"a}ten verschiedener Dimensionen realisiert und deren Emissionseigenschaften untersucht. Dabei wird vor allem die Wechselwirkung des Polariton-Kondensats mit der der unkondensierten Polaritonen bzw. der Quantenfilm-Exzitonen im externen Magnetfeld verglichen und ein Nachweis zum Erhalt der starken Kopplung {\"u}ber die Polariton-Kondensationsschwelle hinaus entwickelt. Außerdem werden die Koh{\"a}renzeigenschaften von null- und eindimensionalen Polariton-Kondensaten durch Bestimmung der Korrelationsfunktion erster beziehungsweise zweiter Ordnung analysiert. Als Materialsystem werden hierbei die III/V-Halbleiter gew{\"a}hlt und die Quantenfilme bestehen bei allen Messungen aus GaAs, die von einer AlAs Kavit{\"a}t umgeben sind. Eindimensionale Polariton-Kondensation - r{\"a}umliche Koh{\"a}renz der Polariton-Dr{\"a}hte Im ersten experimentellen Teil dieser Arbeit (Kapitel 1) wird die Kondensation der Polaritonen in eindimensionalen Dr{\"a}hten unter nicht-resonanter optischer Anregung untersucht. Dabei werden verschiedene Drahtl{\"a}ngen und -breiten verwendet, um den Einfluss des zus{\"a}tzlichen Einschlusses auf die Polariton-Dispersion bestimmen zu k{\"o}nnen. Ziel dieser Arbeit ist es, ein eindimensionales Bose-Einstein-Kondensat mit einer konstanten r{\"a}umlichen Koh{\"a}renz nach dem zentralen Abfall der g^(1)(r)-Funktion f{\"u}r große Abst{\"a}nde r in diesen Dr{\"a}hten zu realisieren (sogenannte langreichweitige Ordnung im System, ODLRO (Abk{\"u}rzung aus dem Englischen off-diagonal long-range order). Durch Analyse der Fernfeldemissionseigenschaften k{\"o}nnen mehrere Polariton-{\"A}ste, der eindimensionale Charakter und die Polariton-Kondensation in 1D-Systemen nachgewiesen werden. Daraufhin wird die r{\"a}umliche Koh{\"a}renzfunktion g^(1)(r) mithilfe eines hochpr{\"a}zisen Michelson-Interferometer, das im Rahmen dieser Arbeit aufgebaut wurde, bestimmt. Die g^(1)(r)-Funktion nimmt hierbei {\"u}ber große Abst{\"a}nde im Vergleich zur thermischen De-Broglie-Wellenl{\"a}nge einen konstanten Plateauwert an, der abh{\"a}ngig von der Anregungsleistung ist. Unterhalb der Polariton-Kondensationsschwelle (Schwellleistung P_S) ist kein Plateau sichtbar und die r{\"a}umliche Koh{\"a}renz ist nur im zentralen Bereich von unter |r| < 1 µm vorhanden. Mit ansteigender Anregungsleistung nimmt das zentrale Maximum in der Weite zu und es bildet sich das Plateau der g^(1)(r)-Funktion aus, das nur außerhalb des Drahtes auf Null abf{\"a}llt. Bei P=1,6P_S ist das Plateau maximal und betr{\"a}gt circa 0,15. Außerdem kann nachgewiesen werden, dass mit steigender Temperatur die Plateauh{\"o}he abnimmt und schließlich bei T=25K nicht mehr gemessen werden kann. Hierbei ist dann nur noch das zentrale Maximum der Koh{\"a}renzfunktion g^(1)(r) sichtbar. Weiterhin werden die Ergebnisse mit einer modernen mikroskopischen Theorie, die auf einem stochastischen Mastergleichungssystem basiert, verglichen, wodurch die experimentellen Daten reproduziert werden k{\"o}nnen. Im letzten Teil des Kapitels wird noch die Koh{\"a}renzfunktion g^(1)(r) im 1D-Fall mit der eines planaren Polariton-Kondensats verglichen (2D). Nulldimensionale Polariton-Kondensation - Kondensation und Magnetfeldwechselwirkung in einer Hybridkavit{\"a}t Im zweiten Teil der Arbeit wird die Polariton-Kondensation in einer neuartigen Hybridkavit{\"a}t untersucht. Der Aufbau des unteren Spiegels und der Kavit{\"a}t inklusive der 12 verwendeten Quantenfilme ist analog zu den gew{\"o}hnlichen Mikrokavit{\"a}ten auf Halbleiterbasis. Der obere Spiegel jedoch besteht aus einer Kombination von einem DBR (Abk{\"u}rzung aus dem Englischen distributed Bragg reflector) und einem Brechungsindexkontrast-Gitter mit einem Luft-Halbleiter{\"u}bergang (gr{\"o}ßt m{\"o}glichster Brechungsindexkontrast). Durch die quadratische Strukturgr{\"o}ße des Gitters (Seitenl{\"a}nge 5µm) sind die Polaritonen zus{\"a}tzlich zur Wachstumsrichtung noch in der Quantenfilmebene eingesperrt, so dass sie als nulldimensional angesehen werden k{\"o}nnen (Einschluss auf der ungef{\"a}hren Gr{\"o}ße der thermischen De-Broglie-Wellenl{\"a}nge). Um den Erhalt der starken Kopplung {\"u}ber die Kondensationsschwelle hinaus nachweisen zu k{\"o}nnen, wird ein Magnetfeld in Wachstumsrichtung angelegt und die diamagnetische Verschiebung des Quantenfilms mit der des 0D-Polariton-Kondensats verglichen. Hierdurch kann das Polariton-Kondensat von dem konventionellen Photonlasing in solchen Strukturen unterschieden werden. Weiterhin wird als letztes Unterscheidungsmerkmal zwischen Photonlasing und Polariton-Kondensation eine Messung der Autokorrelationsfunktion zweiter Ordnung g^(2)(t) durchgef{\"u}hrt. Dabei kann ein Wiederanstieg des g^(2)(t = 0)-Werts mit ansteigender Anregungsleistung nachgewiesen werden, nachdem an der Kondensationsschwelle der g^(2)(t = 0)-Wert auf 1 abgefallen ist, was auf eine zeitliche Koh{\"a}renzzunahme im System hinweist. Oberhalb der Polariton-Kondensationsschwelle P_S steigt der g^(2)(t = 0)-Wert wieder aufgrund zunehmender Dekoh{\"a}renzprozesse, verursacht durch die im System ansteigende Polariton-Polariton-Wechselwirkung, auf Werte gr{\"o}ßer als 1 an. F{\"u}r einen gew{\"o}hnlichen Photon-Laser (VCSEL, Abk{\"u}rzung aus dem Englischen vertical-cavity surface-emitting laser) im monomodigen Betrieb kann mit steigender Anregungsleistung kein Wiederanstieg des g^(2)(t = 0)-Werts gemessen werden. Somit stellt dies ein weiteres Unterscheidungsmerkmal zwischen Polariton-Kondensation und Photonlasing dar. Zweidimensionale Polariton-Kondensation - Wechselwirkung mit externem Magnetfeld Im letzten experimentellen Kapitel dieser Arbeit wird die Magnetfeldwechselwirkung der drei m{\"o}glichen Regime der Mikrokavit{\"a}tsemission einer planaren Struktur (zweidimensional) untersucht. Dazu werden zuerst durch eine Leistungsserie bei einer Verstimmung des Photons und des Quantenfilm-Exzitons von d =-6,5meV das lineare, polaritonische Regime, das Polariton-Kondensat und bei weiterer Erh{\"o}hung der Anregungsleistung das Photonlasing identifiziert. Diese drei unterschiedlichen Regime werden daraufhin im Magnetfeld von B=0T-5T auf ihre Zeeman-Aufspaltung und ihre diamagnetische Verschiebung untersucht und die Ergebnisse der Magnetfeldwechselwirkung werden anschließend miteinander verglichen. Im linearen Regime kann die Abh{\"a}ngigkeit der Zeeman-Aufspaltung und der diamagnetischen Verschiebung vom exzitonischen Anteils des Polaritons best{\"a}tigt werden. Oberhalb der Polariton-Kondensationsschwelle wird eine gr{\"o}ßere diamagnetische Verschiebung gemessen als f{\"u}r die gleiche Verstimmung im linearen Regime. Dieses Verhalten wird durch Abschirmungseffekte der Coulomb-Anziehung von Elektronen und L{\"o}chern erkl{\"a}rt, was in einer Erh{\"o}hung des Bohrradius der Exzitonen resultiert. Auch die Zeeman-Aufspaltung oberhalb der Polariton-Kondensationsschwelle zeigt ein vom unkondensierten Polariton abweichendes Verhalten, es kommt sogar zu einer Vorzeichenumkehr der Aufspaltung im Magnetfeld. Aufgrund der langen Spin-Relaxationszeiten von 300ps wird eine Theorie basierend auf der im thermischen Gleichgewichtsfall entwickelt, die nur ein partielles anstatt eines vollst{\"a}ndigen thermischen Gleichgewicht annimmt. So befinden sich die einzelnen Spin-Komponenten im Gleichgewicht, w{\"a}hrend zwischen den beiden Spin-Komponenten kein Gleichgewicht vorhanden ist. Dadurch kann die Vorzeichenumkehr als ein Zusammenspiel einer dichteabh{\"a}ngigen Blauverschiebung jeder einzelner Spin-Komponente und der Orientierung der Spins im Magnetfeld angesehen werden. F{\"u}r das Photonlasing kann keine Magnetfeldwechselwirkung festgestellt werden, wodurch verdeutlicht wird, dass die Messung der Zeeman-Aufspaltung beziehungsweise der diamagnetischen Verschiebung im Magnetfeld als ein eindeutiges Werkzeug zur Unterscheidung zwischen Polariton-Kondensation und Photonlasing verwendet werden kann.}, subject = {Exziton-Polariton}, language = {de} }