@phdthesis{Genheimer2023, author = {Genheimer, Ulrich}, title = {The Photophysics of Small Organic Molecules for Novel Light Emitting Devices}, doi = {10.25972/OPUS-32031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320313}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This PhD thesis addresses the photophysics of selected small organic molecules with the purpose of using them for efficient and even novel light sources. In particular, the studies presented focused on revealing the underlying exciton dynamics and determining the transition rates between different molecular states. It was shown how the specific properties and mechanisms of light emission in fluorescent molecules, molecules with phosphorescence or thermally activated delayed fluorescence (TADF), biradicals, and multichromophores can be utilized to build novel light-emitting devices. The main tool employed here was the analysis of the emitters' photon statistics, i.e. the analysis of the temporal distribution of emitted photons, during electrical or optical excitation. In the introduction of this work, the working principle of an organic light-emitting diode (OLED) was introduced, while Chapter 2 provided the physical background of the relevant properties of organic molecules and their interaction with light. In particular, the occurrence of discrete energy levels in organic semiconductors and the process of spontaneous light emission were discussed. Furthermore, in this chapter a mathematical formalism was elaborated with the goal to find out what kind of information about the studied molecule can be obtained by analyzing its photon statistics. It was deduced that the intensity correlation function g (2)(t) contains information about the first two factorial moments of the photon statistics and that higher order factorial moments do not contain any additional information about the system under study if the system is always in the same state after the emission of a photon. To conclude the introductory part, Chapter 3 introduced the utilized characterization methods including confocal microscopy of single molecules, time correlated single photon counting and temperature dependent photoluminescence measurements. To provide the background necessary for an understanding of for the following result chapters, in Section 4.1 a closer look was taken at the phenomenon of blinking and photobleaching of individual molecules. For a squaraine-based fluorescent emitter rapid switching between a bright and dark state was observed during photoexcitation. Using literature transition rates between the molecular states, a consistent model was developed that is able to explain the distribution of the residence times of the molecule in the bright and dark states. In particular, an exponential and a power-law probability distribution was measured for the time the molecule resides in tis bright and dark state, respectively. This behavior as well as the change in photoluminescence intensity between the two states was conclusively explained by diffusion of residual oxygen within the sample, which had been prepared in a nitrogen-filled glovebox. For subsequent samples of this work, thin strips of atomic aluminum were deposited on the matrices to serve as oxygen getter material. This not only suppressed the efficiency of photobleaching, but also noticeably prolonged the time prior to photobleaching, which made many of the following investigations possible in the first place. For emitters used in displays, emission properties such as narrow-band luminescence and short fluorescence lifetimes are desired. These properties can be influenced not only by the emitter molecule itself, but also by the interaction with the chosen environment. Therefore, before focusing on the photophysics of individual small organic molecules, Section 4.2 highlighted the interaction of a perylene bisimide-based molecular species with its local environment in a disordered polymethyl methacrylate matrix. In a statistical approach, individual photophysical properties were measured for 32 single molecules and correlations in the variation of the properties were analyzed. This revealed how the local polarity of the molecules' environment influences their photophysics. In particular, it was shown how an increase in local polarity leads to a red-shifted emission, narrower emission lines, broader vibronic splitting between different emission lines in combination with a smaller Huang-Rhys parameter, and a longer fluorescence lifetime. In the future, these results may help to embed individual chromophores into larger macromolecules to provide the chromophore with the optimal local environment to exhibit the desired emission properties. The next two sections focused on a novel and promising class of chromophores, namely linear coordinated copper complexes, synthesized in the group of Dr. Andreas Steffen at the Institute of Inorganic Chemistry at the University of W{\"u}rzburg. In copper atoms, the d-orbitals are fully occupied, which prevents undesirable metal-centered d-d⋆ states, which tend to lie low in energy and recombine non-radiatively. Simultaneously, the copper atom provides a flexible coordination geometry, while complexes in their linear form are expected to exhibit the least amount of excited state distortions. Depending on the chosen ligands, these copper complexes can exhibit phosphorescence as well as temperature activated delayed fluorescence. In Section 4.3, a phosphorescent copper complex with a chlorine atom and a 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-2-pyrrolidine-ylidene- ligand was tested for its suitability as an optically active material in an OLED. For this purpose, an OLED with a polyspirobifluorene-based copolymer matrix and the dopant at a concentration of 20 wt\% was electrically excited. Deconvolution of the emission spectrum in contributions from the matrix and the dopant revealed that 60 \% of the OLEDs emission was due to the copper complex. It was also shown that the shape of the emission spectrum of the copper complex remains unchanged upon incorporation into the OLED, but is red-shifted by about 233 meV. In Section 4.4, a second copper complex exhibiting thermally activated delayed fluorescence was analyzed. This complex comprised a carbazolate as well as a 2-(2,6- diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-ide ligand and was examined in the solid state and at the single-molecule level, where single photon emission was recorded up to an intensity of 78'000 counts per second. The evaluation of the second-order autocorrelation function of the emitted light proved an efficient transition between singlet and triplet excited states on the picosecond time scale. In the solid state, the temperature- dependent fluorescence decay of the complex was analyzed after pulsed photoexcitation in the temperature range between 300 K and 5 K. From these measurements, a small singlet-triplet energy gap of only 65 meV and a triplet sublevel splitting of 3.0 meV were derived. The transition rates between molecular states could also be determined. Here, the fast singlet decay time of τS1 = 9.8ns proved the efficient thermally activated delayed fluorescence process, which was demonstrated for the first time for this new class of copper(I) complexes thus. While the use of thermally activated delayed fluorescence is a potential way to harness otherwise long-living dark triplet states, radicals completely avoid dark triplet states. However, this usually comes with the huge drawback of the molecules being chemically unstable. Therefore, two chemically stable biradical species were synthesized in the framework of the DFG research training school GRK 2112 on Molecular biradicals: structure, properties and reactivity, by Yohei Hattori in the group of Prof. Dr. Christoph Lambert and Rodger Rausch in the group of Prof. Dr. Frank W{\"u}rthner at the Institute of Organic Chemistry at the University of W{\"u}rzburg, respectively. In Section 4.5, it was investigated how these molecules can be used in OLEDs. In the first isoindigo based biradical (6,6'-bis(3,5-di-tert-butyl-4-phenoxyl)-1,1'-bis(2- ethylhexyl)-[3,3'-biindolinyl-idene]-2,2'-dione) two tert-butyl moieties kinetically block chemical reactions at the place of the lone electrons and an electron-withdrawing core shifts the electron density into the center of the chromophore. With these properties, it was possible to realize a poly(p-phenylene vinylene) copolymer based OLED doped with the biradical and to observe luminescence during optical as well as electrical excitation. Analyzing shapes of the photo- and electroluminescence spectra at different doping concentrations, F{\"o}rster resonance energy transfer was determined to be the dominant transition mechanism for excitons from the matrix to the biradical dopants. Likewise, OLEDs could be realized with the second diphenylmethylpyridine based birad- ical (4-(5-(bis(2,4,6-trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)-N-(4-(5-(bis(2,4,6- -trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)phenyl)-N-(4-methoxyphenyl)aniline) as dopant. In this biradical, chlorinated diphenylmethyl groups protect the two unpaired electrons. Photo- and electroluminescence spectra showed an emission in the near in- frared spectral range between 750 nm and 1000 nm. Also, F{\"o}rster resonance energy trans- fer was the dominant energy transfer mechanism with an transfer efficiency close to 100 \% even at doping concentrations of only 5 wt\%. In addition to demonstrating the working OLEDs based in biradicals, the detection of luminescence of the two biradical species in devices also constitutes an important step toward making use of experimental techniques such as optically detected electron spin resonance, which could provide information about the electronic states of the emitter and their spin manifold during OLED operation. Another class of emitters studied are molecules in which several chromophores are co- valently linked to form a macrocyclic system. The properties of these multichromophores were highlighted in Section 4.6. Here, it was analyzed how the photophysical behavior of the molecules is affected by the covalent linking, which determines the interaction be- tween the chromophores. The first multichromophore, 2,2'-ditetracene, was synthesized by Lena Ross in the group of Prof. Dr. Anke Kr{\"u}ger at the Institute of Organic Chemistry at the University of W{\"u}rzburg and was analyzed in this work both at the single-molecule level and in its aggregated crystalline form. While the single crystals were purified and grown in a vertical sublimation oven, the samples for the single molecule studies were prepared in matrices of amorphous polymethyl methacrylate and crystalline anthracene. Tetracene was analyzed concurrently to evaluate the effects of covalent linking. In samples where the distance between two molecules is sufficiently large, tetracene and 2,2'-ditracene show matching emission profiles with the only difference in the Franck-Condon factors and a de- creased photoluminescence decay time constant from 14 ns for tetracene to 5 ns for 2,2'- ditracene, which can be attributed to the increased density of the vibrational modes in 2,2'-ditracene. Evaluation of the photon statistics of individual 2,2'-ditracene molecules however showed that the system does not behave as two individual chromophores but as a collective state, preserving the spectral properties of the two tetracene chromophores. Complementary calculations performed by Marian Deutsch in the group of Prof. Dr. Bernd Engels at the Institute of Physical and Theoretical Chemistry at the University of W{\"u}rzburg helped to understand the processes in the materials and could show that the electronic and vibronic modes of 2,2'-ditracene are superpositions of the modes occurring in tetracene. In contrast, single-crystalline 2,2'-ditetracene behaves significantly different than tetracene, namely exhibiting a red shift in photoluminescence of 150 meV, caused by an altered crys- talline packing that lowers the S1-state energy level. Temperature-dependent photolu- minescence measurements revealed a rich emission pattern from 2,2'-ditetracene single crystals. The mechanisms behind this were unraveled using photoluminescence lifetime density analysis in different spectral regions of the emission spectrum and at different tem- peratures. An excimer state was identified that is located about 5 meV below the S1-state, separated by a 1 meV barrier, and which can decay to the ground state with a time constant of 9 ns. Also, as the S1-state energy level is lowered below the E(S1) ≥ 2 ×E(T1) threshold, singlet fission is suppressed in 2,2'-ditetracene in contrast to tetracene. Therefore, at low temperatures, photoluminescence is enhanced by a factor of 46, which could make 2,2'- ditetracene a useful material for future applications in devices such as OLEDs or lasers. The second multichromophore species, para-xylylene bridged perylene bisimide macrocycles, were synthesized by Peter Spenst in the group of Prof. Dr. Frank W{\"u}rthner at the Institute of Organic Chemistry at the University of W{\"u}rzburg, by linking three and four perylene bisimides, respectively. To reveal the exciton dynamics in these macrocycles, highly diluted monomers as well as trimers and tetramers were doped into matrices of polymethyl methacrylate to create thin films in which individual macrocycles could be analyzed. The emission spectra of the macrocycles remained identical to those of the monomers, indicating weak coupling between the chromophores. Single photon emission could be verified for monomers as well as macrocycles, as exciton-exciton annihilation processes suppress the simultaneous emission of two photons from one macrocycle. Nevertheless, the proof of the occurrence of a doubly excited state was obtained by excitation power dependent photon statistics measurements. The formalism developed in the theory part of this thesis for calculating the photon statistics of multichromophore systems was used here to find a theoretical model that matches the experimental results. The main features of this model are a doubly excited state, fast singlet-singlet annihilation, and an efficient transition from the doubly excited state to a dark triplet state. The occurrence of triplet-triplet annihilation was demonstrated in a subsequent experiment in which the macrocycles were excited at a laser intensity well above the saturation intensity of the monomer species. In contrast to the monomers, the trimers and tetramers exhibited neither a complete dark state nor saturation of photoluminescence. Both processes, efficient singlet-singlet and triplet-triplet annihilation make perylene bisimide macrocycles exceptionally bright single photon emitters. These advantages were utilized to realize a room temperature electrically driven fluorescent single photon source. For this purpose, OLEDs were fabricated using polyvinylcarbazole and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol blends as a host material for perylene bisimide trimers. Photon antibunching could be observed in both optically and electrically driven devices, representing the first demonstration of electrically driven single photon sources using fluorescent emitters at room temperature. As expected from the previous optical experiments, the electroluminescence of the molecules was exceptionally bright, emitting about 105 photons per second, which could be seen even by eye under the microscope. Finally, in the last section 4.7 of this thesis, two additional measurement schemes were proposed as an alternative to the measurement of the second-order correlation function g (2)(t) of single molecules, which only provides information about the first two factorial moments of the molecules' photon statistics. In the first scheme, the g (3)(t) function was measured with three photodiodes, which is a consequential extension of the Hanbury Brown and Twiss measurement with two photodiodes. It was demonstrated how measuring the g (3)(t) function is able to identify interfering emitters with non-Poisson statistics in the experiment. The second setup was designed with an electro-optic modulator that repeatedly gen- erates photoexcitation in the form of a step function. The recording of luminescence transients for different excitation intensities yields the same results as the correspond- ing g (2)-functions measured on single emitters, both in their shape and in their depen- dence on excitation power. To demonstrate this concept, the TADF emitter TXO-TPA (2- [4-(diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) was doped at a concen- tration of 10-4 wt\% in a mCP (1,3-Bis(N-carbazolyl)benzene) matrix. This concentration was low enough that TXO-TPA molecules did not interact with each other, but an ensem- ble of molecules was still present in the detection volume. The intramolecular transition rates between singlet and triplet states of TXO-TPA could be derived with an error of at most 5 \%. Other experimental techniques designed to obtain this information require ei- ther lengthy measurements on single molecules, where sample preparation is also often a challenge, or temperature-dependent fluorescence lifetime measurements, which require a cryostat, which in turn places constraints on the sample design used. In future, this ap- proach could establish a powerful method to study external factors influencing molecular transition rates. Overall, this thesis has introduced new molecular materials, revealed their photophys- ical properties, and demonstrated how they can be used to fabricate efficient and even novel light sources.}, subject = {Fotophysik}, language = {en} } @phdthesis{Helmerich2023, author = {Helmerich, Dominic Andreas}, title = {Einfl{\"u}sse der Photophysik und Photochemie von Cyaninfarbstoffen auf die Lokalisationsmikroskopie}, doi = {10.25972/OPUS-24716}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In den letzten Jahren haben sich hochaufl{\"o}sende Fluoreszenzmikroskopiemethoden, basierend auf der Lokalisation einzelner Fluorophore, zu einem leistungsstarken Werkzeug etabliert, um Fluoreszenzbilder weit unterhalb der Aufl{\"o}sungsgrenze zu generieren. Hiermit k{\"o}nnen r{\"a}umliche Aufl{\"o}sungen von ~ 20 nm erzielt werden, was weit unterhalb der Beugungsgrenze liegt. Dabei haben zahlreiche Optimierungen und Entwicklungen neuer Methoden in der Einzelmolek{\"u}l-Lokalisationsmikroskopie die Genauigkeit der orstspezifischen Bestimmung einzelner Fluorophore auf bis zu ~ 1 - 3 nm erh{\"o}ht. Eine Aufl{\"o}sung im molekularen Bereich, weit unterhalb von ~ 10 nm bleibt allerdings herausfordernd, da die Lokalisationsgenauigkeit nur ein Kriterium hierf{\"u}r ist. Allerdings wurde sich in den letzten Jahren {\"u}berwiegend auf die Verbesserung dieses Parameters konzentriert. Weitere Kriterien f{\"u}r die fluoreszenzmikroskopische Aufl{\"o}sung sind dabei unter anderem die Markierungsdichte und die Kopplungseffizienz der Zielstruktur, sowie der Kopplungsfehler (Abstand zur Zielstruktur nach Farbstoffkopplung), die sich herausfordernd f{\"u}r eine molekulare Aufl{\"o}sung darstellen. Auch wenn die Kopplungseffizienz und -dichte hoch und der Kopplungsfehler gering ist, steigt bei Interfluorophordistanzen < 5nm, abh{\"a}ngig von den Farbstoffen, die Wahrscheinlichkeit von starken und schwachen Farbstoffwechselwirkungen und damit von Energie{\"u}bertragungsprozessen zwischen den Farbstoffen, stark an. Daneben sollten Farbstoffe, abh{\"a}nging von der Lokalisationsmikroskopiemethode, spezifische Kriterien, wie beispielsweise die Photoschaltbarkeit bei dSTORM, erf{\"u}llen, was dazu f{\"u}hrt, dass diese Methoden h{\"a}ufig nur auf einzelne Farbstoffe beschr{\"a}nkt sind. In dieser Arbeit konnte mithilfe von definierten DNA-Origami Konstrukten gezeigt werden, dass das Blinkverhalten von Cyaninfarbstoffen unter dSTORM-Bedingungen einer Abstandsabh{\"a}ngigkeit aufgrund von spezifischen Energie{\"u}bertragungsprozessen folgt, womit Farbstoffabst{\"a}nde im sub-10 nm Bereich charakterisiert werden konnten. Dar{\"u}ber hinaus konnte diese Abstandsabh{\"a}ngigkeit an biologischen Proben gezeigt werden. Hierbei konnten verschiedene zellul{\"a}re Rezeptoren effizient und mit geringem Abstandsfehler zur Zielstruktur mit Cyaninfarbstoffen gekoppelt werden. Diese abstandsabh{\"a}nigen Prozesse und damit Charakterisierungen k{\"o}nnten dabei nicht nur spezifisch f{\"u}r die h{\"a}ufig unter dSTORM-Bedingungen verwendeten Cyaninfarbstoffen g{\"u}ltig sein, sondern auch auf andere Farbstoffklassen, die einen Auszustand zeigen, {\"u}bertragbar sein. Dar{\"u}ber hinaus konnte gezeigt werden, dass hochaufl{\"o}sende dSTORM Aufnahmen unabh{\"a}ngig vom Farbstoffkopplungsgrad der Antik{\"o}rpern sind, welche h{\"a}ufig f{\"u}r Standardf{\"a}rbungen von zellul{\"a}ren Strukturen verwendet werden. Dabei konnte durch Photonenkoinzidenzmessungen dargelegt werden, dass aufgrund komplexer Farbstoffwechselwirkungen im Mittel nur ein Farbstoff aktiv ist, wobei h{\"o}here Kopplungsgrade ein komplexes Blinkverhalten zu Beginn der Messung zeigen. Durch die undefinierten Farbstoffabst{\"a}nde an Antik{\"o}rpern konnte hier kein eindeutiger Energie{\"u}bertragungsmechanismus entschl{\"u}sselt werden. Dennoch konnte gezeigt werden, dass Farbstoffaggregate bzw. H-Dimere unter dSTORM-Bedingungen destabilisiert werden. Durch die zuvor erw{\"a}hnten DNA-Origami Konstrukte definierter Interfluorophordistanzen konnten Energie{\"u}bertragungsmechanismen entschl{\"u}sselt werden, die auch f{\"u}r die Antik{\"o}rper diverser Kopplungsgrade g{\"u}ltig sind. Des Weiteren konnten, ausgel{\"o}st durch komplexe Energie{\"u}bertragungsprozesse h{\"o}herer Kopplungsgrade am Antik{\"o}rper, Mehrfarbenaufnahmen zellul{\"a}rer Strukturen generiert werden, die {\"u}ber die spezifische Fluoreszenzlebenszeit separiert werden konnten. Dies stellt hier eine weitere M{\"o}glichkeit dar, unter einfachen Bedingungen, schnelle Mehrfarbenaufnahmen zellul{\"a}rer Strukturen zu generieren. Durch die Verwendung des selben Farbstoffes unterschiedlicher Kopplungsgrade kann hier nur mit einer Anregungswellenl{\"a}nge und frei von chromatischer Aberration gearbeitet werden. Neben den photophysikalischen Untersuchungen der Cyaninfarbstoffe Cy5 und Alexa Fluor 647 wurden diese ebenso photochemisch n{\"a}her betrachtet. Dabei konnte ein neuartiger chemischer Mechanismus entschl{\"u}sselt werden. Dieser Mechanismus f{\"u}hrt, ausgel{\"o}st durch Singulett-Sauerstoff (1O2), zu einer Photozerschneidung des konjugierten Doppelbindungssystems um zwei Kohlenstoffatome, was zu strukturellen und spektroskopischen Ver{\"a}nderungen dieser Farbstoffe f{\"u}hrt. Auf Grundlage dieses Mechanismus konnte eine neue DNA-PAINT Methode entwickelt werden, die zu einer Beschleunigung der Aufnahmezeit f{\"u}hrt.}, subject = {Einzelmolek{\"u}lmikroskopie}, language = {de} } @phdthesis{Flock2021, author = {Flock, Marco}, title = {Velocity Map Imaging-Untersuchung nichtstrahlender Prozesse in polyzyklischen Aromaten und deren van-der-Waals-Clustern}, doi = {10.25972/OPUS-24078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240786}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Das erste Ziel der vorliegenden Dissertation bestand darin, ein bereits bestehendes TOF-MS-Setup dahingehend zu erweitern, um damit Velocity Map Imaging-Experimente durchf{\"u}hren zu k{\"o}nnen. Dies erforderte zun{\"a}chst die Konzipierung und Programmierung einiger f{\"u}r die Datenaufnahme, -verarbeitung und -analyse ben{\"o}tigter LabView-Anwendungen. Anschließend konnten erste Kalibrierexperimente an Methyliodid, in denen wichtige experimentelle Parameter identifiziert und optimiert wurden, durchgef{\"u}hrt werden. Außerdem gelang es dadurch, die Messgenauigkeit des Setups auf 0.7 \% und dessen Aufl{\"o}sungsverm{\"o}gen auf 4.4 \% zu bestimmen, was im Bereich f{\"u}r VMI-Apparaturen typischer Werte liegt. Zur weiteren {\"U}berpr{\"u}fung der Funktionst{\"u}chtigkeit des Setups wurde in ersten zeitaufgel{\"o}sten Experimenten im Folgenden die Desaktivierung des S1-Zustands von Pyridin untersucht. Neben der Reproduktion einiger bereits literaturbekannter Resultate konnten dabei zus{\"a}tzlich die im Multiphotonen-Ionisationsschritt populierten Rydberg-Zust{\"a}nde identifiziert werden. Anschließend wurde mit Experimenten an bisher weniger gut untersuchten organischen Aromaten und Heteroaromaten fortgefahren. Das Ziel dieser Studien lag in der Aufkl{\"a}rung der photoinduzierten Dynamiken der Verbindungen, wobei das zur Verf{\"u}gung stehende ps-Lasersystem die M{\"o}glichkeit bot, die Desaktivierung elektronisch angeregter Zust{\"a}nde gezielt in Abh{\"a}ngigkeit von deren Schwingungsenergie zu untersuchen. Der darin bestehende Vorteil zeigte sich vor allem in Studien an Tolan und Phenanthridin, deren erste angeregte, optisch aktive Zust{\"a}nde am Origin Lebensdauern im ns-Bereich aufweisen, die sich mit zunehmender vibronischer Anregung jedoch auf bis zu 10 ps verringern. Als Grund daf{\"u}r konnten nichtstrahlende Desaktivierungsprozesse, f{\"u}r deren Eintreten eine energetische Barriere {\"u}berwunden werden muss, identifiziert werden. W{\"a}hrend in Tolan nach Photoanregung ein {\"U}bergang in einen (πσ∗)-Zustand, der zur Ausbildung einer trans-bent-Struktur f{\"u}hrt, erfolgt, ist im Falle von Phenanthridin vermutlich ein El-Sayed-erlaubter ISC-{\"U}bergang in einen 3(nπ∗)-Zustand f{\"u}r die drastische Verk{\"u}rzung der S1-Lebensdauer verantwortlich. Ein solcher konnte weder im zu Phenanthridin isomerischen Benzo[h]quinolin, noch in dessen PAH-Muttermolek{\"u}l Phenanthren beobachtet werden, was auf die h{\"o}here energetische Lage bzw. die Abwesenheit des mittels ISC populierten 3(nπ∗)-Zustands in diesen Molek{\"u}len zur{\"u}ckgef{\"u}hrt werden kann. In weiteren im Rahmen der vorliegenden Arbeit durchgef{\"u}hrten Experimente wurden zudem die aromatischen Molek{\"u}le Acenaphthylen und 4-(Dimethylamino)benzethin (DMABE) untersucht. Zeitaufgel{\"o}ste Studien zeigten dabei, dass die Desaktivierung der S2-Zust{\"a}nde beider Molek{\"u}le auf der sub-ps-Zeitskala stattfindet und mit dem vorhandenen Lasersystem daher nicht aufgel{\"o}st werden kann. In Acenaphthylen erfolgt die S2-Relaxation gr{\"o}ßtenteils {\"u}ber einen sequentiellen IC-Mechanismus, innerhalb dem der S1-Zustand des Molek{\"u}ls intermedi{\"a}r besetzt wird. Dessen Lebensdauer konnte am Origin auf 380 ps bestimmt werden, f{\"a}llt mit steigender Schwingungsanregung jedoch auf bis zu 55 ps ab. F{\"u}r die Desaktivierung des S2-Zustands von DMABE konnte hingegen ein paralleles Relaxationsmodell, in dem neben dem S1-Zustand ein weiterer elektronisch angeregter Zustand populiert wird, nachgewiesen werden. Bei diesem k{\"o}nnte es sich m{\"o}glicherweise um einen (πσ∗)-Zustand, dessen Besetzung die Ausbildung einer trans-bent-Geometrie innerhalb der Acetylen-Einheit des Molek{\"u}ls zur Folge hat, handeln. Einen weiteren großen Teil der vorliegenden Dissertation nahmen Experimente an van-der-Waals-gebundenen Clustersystemen ein. Im Fokus der Studien standen dabei Molek{\"u}le mit ausgedehnten aromatischen π-Systemen, da solche eine hohe Relevanz f{\"u}r verschiedene materialwissenschaftliche Forschungsgebiete besitzen. Ein Beispiel hierf{\"u}r ist Tetracen, welches als Modellsystem f{\"u}r die Untersuchung von Singlet Fission-Prozessen angesehen wird. In Kombination mit nichtadiabatischen Surface-Hopping-Simulationen zeigten Experimente an Tetracen-Dimeren, dass nach deren S2-Anregung zun{\"a}chst ein schneller S1←S2-{\"U}bergang (τ < 1 ps), gefolgt von der Ausbildung einer Excimerstruktur, stattfindet. Letztere erfolgt mit einer Zeitkonstante von 62 ps und f{\"u}hrt zu einem Anstieg des transienten Ionensignals, wohingegen die Desaktivierung des Excimer-Zustands von einem abklingenden Signalbeitrag mit τ = 123 ps repr{\"a}sentiert wird. Wenngleich {\"u}ber die weitere Relaxation der Excimerspezies zum gegenw{\"a}rtigen Zeitpunkt keine Aussage getroffen werden kann, besteht damit die M{\"o}glichkeit, dass Excimer-Zust{\"a}nde als Zwischenstufe im SF-Mechanismus isolierter Tetracen-Dimere auftreten. In zeitaufgel{\"o}sten Experimenten an Phenanthren-Dimeren konnte ebenfalls ein Anstieg des transienten Signals mit einer vergleichbaren Zeitkonstante von τ = 86 ps, der jedoch auf einem konstanten Signaloffset endet, gefunden werden. Dies deutet darauf hin, dass auch Phenanthren-Dimere in der Lage sind, Excimerstrukturen, die im Gegensatz zu denen des Tetracens jedoch deutlich langlebiger sind, auszubilden. Studien an den Dimerspezies der Azaphenanthrene Benzo[h]quinolin und Phenanthridin offenbarten hingegen etwas schnellere Relaxationen mit Zeitkonstanten von 15 bzw. 40 ps. Zudem zeigten beide Spezies eine stark ausgepr{\"a}gte Fragmentation, sodass f{\"u}r deren Untersuchung auf die VMI-Detektionsmethode zur{\"u}ckgegriffen werden musste. Dadurch wurde deutlich, dass sich Photoionen-Imaging-Experimente hervorragend f{\"u}r Studien an schwach gebundenen Clustersystemen eignen, da diese die Separation verschiedener Signalbeitr{\"a}ge innerhalb eines betrachteten Massenkanals erm{\"o}glichen.}, subject = {Strahlungslose Desaktivierung}, language = {de} } @phdthesis{Hupp2020, author = {Hupp, Benjamin}, title = {Untersuchung von Struktur-Eigenschafts-Beziehungen Kupfer(I)-basierter NIR-Emitter und MRP-Materialien}, doi = {10.25972/OPUS-18769}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187694}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen dieser Arbeit wurden lumineszente Kupfer(I)-verbindungen untersucht, um durch die Herstellung von Struktur-Eigenschafts-Beziehungen einen Beitrag zur Erforschung niederenergetischer Emitter und mechanoresponsiver Phosphoreszenzmaterialien zu leisten. Dar{\"u}ber hinaus wurden Vorarbeiten zur Ergr{\"u}ndung kooperativer Effekte in dinuklearen Kupfer(I)-komplexen durchgef{\"u}hrt. Im Bereich niederenergetischer Emitter wurden tetraedrische Kupferverbindungen mit Chromophorliganden auf Basis des Grundmotivs 2-(Pyridin-2-yl)-imdazol untersucht. Komplexe mit diesem Liganden emittieren meistens Gr{\"u}n bis Orange, daher wurde ein Stickstoffatom im R{\"u}ckgrat des Liganden durch Schwefel substituiert, um eine bathochrome Verschiebung zu bewirken. Zur Untersuchung des Einflusses der Donorst{\"a}rke, Sterik und Komplexgeometrie auf das Emissionsverhalten wurden diverse Phosphane und ein NHC als Donorliganden verwendet. Die Emissionsmaxima der untersuchten Verbindungen liegen erwartungsgem{\"a}ß im Orangen bis Tiefroten und es konnten f{\"u}r diesen Emissionsbereich gute Quantenausbeuten von bis zu 11 \% erreicht werden. Die Anf{\"a}lligkeit tetraedrischer Kupfer(I)-komplexe f{\"u}r Verzerrungen im angeregten Zustand und die damit einhergehende Erh{\"o}hung strahlungsloser Prozesse ließ sich durch den Einsatz sterisch anspruchsvoller Liganden unterdr{\"u}cken. Um das Potenzial f{\"u}r die Verwendung in optoelektronischen Bauteilen zu ergr{\"u}nden, wurden umfangreiche Stabilit{\"a}tstests durchgef{\"u}hrt, die die enorme thermische Belastbarkeit im Festk{\"o}rper sowie langfristige Stabilit{\"a}t in verd{\"u}nnter L{\"o}sung einiger Verbindungen best{\"a}tigten. Ferner wurden in Kooperation mit der Gruppe um Prof. Holger Braunschweig photophysikalische Studien an zwei dinuklearen und einem trinuklearen Kupfer(I)-diborinkomplex durchgef{\"u}hrt, die im Rahmen der Promotionen von Dr. Jan Mies und Dr. Theresa Dellermann synthetisiert wurden. Die Verbindungen weisen in Festk{\"o}rper und L{\"o}sung tiefrote Phosphoreszenz auf. Die Effizienz des trinuklearen Komplexes (φ = 0.58 im Festk{\"o}rper) ist deutlich h{\"o}her als die der beiden dinuklearen Verbindungen (φ < 0.03). Die Kupfer-Diborin-Bindung besitzt einen signifikanten kovalenten Anteil. Die {\"U}bergangsmetallatome haben somit einen starken Einfluss auf die strahlenden {\"U}berg{\"a}nge, was zum Auftreten von Phosphoreszenz f{\"u}hrt. F{\"u}r effiziente Emission ist eine lineare Anordnung zweier Kupferfragmente um das Diborin notwendig, was im Fall des trinuklearen Komplexes stets gew{\"a}hrleistet ist, f{\"u}r die dinuklearen Komplexe jedoch nur in L{\"o}sung zu beobachten ist. Durch die Studien wurde einerseits das komplexe Emissionsverhalten dieser Komplexe aufgekl{\"a}rt und andererseits die Relevanz dieser neuen Verbindungsklasse f{\"u}r niederenergetische Emittermaterialien gezeigt. Zus{\"a}tzlich wurden Vorarbeiten zur Untersuchung kooperativer Effekte in dinuklearen Kupfer(I)-verbindungen unter Ausschluss schwer zu erhaltender cuprophiler Wechselwirkungen durchgef{\"u}hrt. Es sollten mono- und dinukleare Kupfer(I)-komplexe mit Bisbenzimidazol und Benzimidazolpyrimidin als verbr{\"u}ckenden Chromophorliganden synthetisiert und photophysikalisch untersucht werden, um eine eventuelle Erh{\"o}hung der Effizienz der dinuklearen Komplexe gegen{\"u}ber ihren mononuklearen Analoga zu quantifizieren. Im Rahmen dieser Arbeit gelang es, einen zuverl{\"a}ssigen Syntheseweg f{\"u}r die im R{\"u}ckgrat alkylierten verbr{\"u}ckenden Liganden zu etablieren. Ferner wurden erste Versuche zur Herstellung kationischer und neutraler mononuklearer Komplexe durchgef{\"u}hrt. Außerdem wurde die mechanochrome Lumineszenz eines aus Vorarbeiten bekannten dinuklearen Kupferkomplexes untersucht und Struktur-Eigenschafts-Beziehungen hergestellt. Hierzu wurden Komplexsalze mit den Anionen PF6- und BF4- hergestellt und mittels zahlreicher Spektroskopiemethoden analysiert, um umfangreiche Informationen zu den Eigenschaften im Grund- und angeregten Zustand zu sammeln. Durch Schwingungsspektroskopie wurde nachgewiesen, dass die Phasen{\"a}nderung zu keiner ver{\"a}nderten Konstitution der Verbindung im Grundzustand f{\"u}hrt. Durch 1H-19F-HOESY- sowie 19F-Festk{\"o}rper-NMR-Experimente wurde festgestellt, dass sowohl in L{\"o}sung wie auch im Festk{\"o}rper Kation und Anion gepaart vorliegen und miteinander wechselwirken. Da die BF4- und PF6-Komplexe in L{\"o}sung ein sehr {\"a}hnliches Emissionsverhalten zum amorphen Feststoff aufweisen, wurde davon ausgegangen, dass die f{\"u}r die Emission verantwortlichen Strukturen in beiden Medien vergleichbar sind. Zus{\"a}tzlich gelang es, mittels ESR-Spektroskopie nachzuweisen, dass im Grundzustand keine ausreichende Ann{\"a}herung der beiden Kupferatome stattfindet, um dipolare Wechselwirkungen zu erzeugen. Mithilfe quantenchemischer Rechnungen wurde die mechanochrome Lumineszenz nicht auf das Auftreten von Cuprophilie zur{\"u}ckgef{\"u}hrt, sondern auf die Ausbildung einer Cu-F-Bindung im angeregten Zustand, was ein v{\"o}llig neuer Mechanismus f{\"u}r mechanochrome Lumineszenz bei Kupfer(I)-komplexen ist. In weiterf{\"u}hrenden photophysikalischen Studien wurde zudem gezeigt, dass die Emission auch Empfindlichkeit gegen{\"u}ber Temperatur sowie L{\"o}sungsmitteld{\"a}mpfen aufweist und es sich somit um eine multiresponsive Verbindungsklasse handelt.}, subject = {Kupferkomplexe}, language = {de} } @phdthesis{NitschgebLube2017, author = {Nitsch [geb. Lube], J{\"o}rn S.}, title = {Struktur, Reaktivit{\"a}t und Photophysik von Kupfer(I)-Komplexen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123787}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In der Arbeit wurden die Strukturen, Reaktivit{\"a}ten und die Photophysik von verschiedenen Kupfer(I)-Komplexen untersucht. Dazu wurden zun{\"a}chst Kupfer(I)-Halogenid und -Pseudohalogenid Verbindungen der Typen [CuX] und [Cu2I2] mit Phenanthrolin und dessen Derivaten sowohl strukturell als auch photophysikalisch detailliert charakterisiert. Diese Verbindungen weisen eine breite XMLCT-Absorption zwischen 450-600 nm und Emissionsbanden zwischen 550-850 nm im Festk{\"o}rper auf. Es zeigte sich f{\"u}r diese strukturell einfachen Verbindungen ein komplexes und sehr unterschiedliches photophysikalisches Verhalten. Dabei wurde neben strukturellen Parametern, wie z.B. π-Wechselwirkungen, auch der Einfluss des Halogen bzw. Pseudohalogenatoms untersucht. Es konnte gezeigt werden, dass mindestens zwei angeregte Zust{\"a}nde an der Emission von [CuI(dtbphen)] (16) und [CuBr(dtbphen)] (17) im Feststoff beteiligt sind und es wurden m{\"o}gliche Mechanismen wie TADF und die Beteiligung von zwei Triplett Zust{\"a}nden diskutiert. Die Glasmatrixmessungen von 17 in 2-Methyltetrahydrofuran wie auch die temperaturabh{\"a}ngigen Messungen von [Cu2(µ2-I)2(dmphen)2] (21) zeigen im Gegensatz dazu keinen Hinweis auf TADF. In der Summe zeichnet sich ein komplexes photophysikalisches Bild dieser Komplexe, in der neben molekularen Parametern auch Festk{\"o}rpereffekte eine wichtige Rolle spielen und die eine einfache Zuordnung zu einem bestimmten Mechanismus schwierig machen. Neuartige Verbindungen mit einem Cuban-Strukturmotiv [L4Cu4X4] (X = Br (32) und Cl (33)), die von einem Phosphininliganden (L = 2,4-Diphenyl-5-methyl-6-(2,3-dimethylphenyl)-phosphinin, 31) koordiniert sind, wurden in einer weiteren Studie photophysikalisch untersucht. Im Gegensatz zu anderen Schweratomkomplexen des Phosphinins, wie z.B. [Ir(C^P)3] (mit C^P = cyclometalliertes 2,4,6-Triphenylphosphinin) zeigen die Cu(I)-Verbindungen bereits bei Raumtemperatur eine intensive Phosphoreszenz. Die LE-Emission kann auf der Grundlage von DFT-Rechnungen einem 3XMLCT Zustand zugeordnet werden. Im Kontrast zu strukturanalogen Pyridin Komplexen ist kein clusterzentrierter 3CC {\"U}bergang festzustellen, sondern eine schwache HE-Emissionsbande ist mit großer Wahrscheinlichkeit der Restfluoreszenz des Phosphininliganden 31 geschuldet. Eine weitere Ligandenmodifikation wurde mit der Einf{\"u}hrung von NHCs als starke σ-Donor Liganden erreicht. Einerseits wurde die Photophysik von [Cu2Cl2(NHC^Pic)2]-Systemen (mit NHC^Pic = N-Aryl-N'-(2-picolyl) imidazolin 2 yliden) untersucht, die einen Hybridliganden mit Picolyl- und NHC Funktionalit{\"a}t beinhalten. Es konnte gezeigt werden, dass diese Verkn{\"u}pfung eines starken σ-Donoren und eines π*-Akzeptors zu hohen Quantenausbeuten von bis zu 70\% f{\"u}hren kann, wenn zus{\"a}tzlich auch dispersive Cu-Cu-Wechselwirkungen vorhanden sind. Die Effizienz der Emission kann sich bei Anwesenheit dieser dispersiven Interaktionen im Gegensatz zu Systemen ohne kurze Cu-Cu-Abst{\"a}nde um den Faktor zwei erh{\"o}hen. Dinukleare Strukturen von Typ [Cu2Cl2(IMesPicR)2] wurden f{\"u}r die Komplexe 41-44 gefunden, die einen Donor-Substituenten in der para-Position der Picolyl-Funktionalit{\"a}t tragen. F{\"u}r eine Nitro-Gruppe in der 4-Postion konnte der mononukleare Komplex [CuCl(IMesPicR)] (45) isoliert werden. Ferner k{\"o}nnen die Substituenten am NHC ebenfalls die Strukturen im Festk{\"o}rper beeinflussen. So kann f{\"u}r 46 eine polymere Struktur [CuCl(IDippPic)]∞ festgestellt werden. Die Emission in diesen Systemen ist mit einer Elektronenumverteilung aus der Pyridin- und Carbenfunktionalit{\"a}t in das Kupfer- bzw. Chloridatom (LMXCT-{\"U}bergang) verbunden. Dabei zeigen die Komplexe [Cu2Cl2(IMesPicH)2] (41), [Cu2Cl2(IMesPicMe)2] (42) und [Cu2Cl2(IMesPicCl)2] (43) zus{\"a}tzlich Anzeichen von TADF. Zum anderem sind NHC Liganden und dispersive Cu-Cu-Wechselwirkungen Gegenstand einer weiteren strukturellen und photophysikalischen Studie. In dieser wurden die Cu-Cu-Abst{\"a}nde in dinuklearen Kupfer(I)-Bis-NHC-Komplexen [Cu2(tBuIm2(R^R))2](PF6)2 (50-52) durch die Einf{\"u}hrung von Methylen, Ethylen und Propylenbr{\"u}ckeneinheiten systematisch variiert. Die erhaltenen Komplexe wurden strukturell und photophysikalisch mit einem mononuklearen Komplex [Cu(tBu2Im)2](PF6) (53) verglichen. Dadurch konnte der Einfluss von kurzen Cu-Cu-Abst{\"a}nden auf die Emissionseigenschaften gezeigt werden, auch wenn der genaue Ursprung einer ebenfalls beobachteten Mechanochromie noch nicht g{\"a}nzlich aufgekl{\"a}rt ist. M{\"o}glich ist die Existenz verschiedener Konformere in den Pulverproben (Polymorphie), die das Entstehen niederenergetischer Banden in der zerriebenen, amorphen Pulverprobe von [Cu2(tBuIm2(C3H6))2](PF6)2 (52), aber auch die duale Emissionen von [Cu2(tBuIm2(CH2))2](PF6)2 (50) und [Cu2(tBuIm2(C2H4))2](PF6)2 (51) erkl{\"a}ren k{\"o}nnten. Die hochenergetische Bande kann f{\"u}r alle Komplexe aufgrund von DFT-und TD-DFT-Rechnungen, 3LMCT Zust{\"a}nden zugeordnet werden, w{\"a}hrend niederenergetische Emissionsbanden immer dann zu erwarten sind, wenn 3MC-Zust{\"a}nde populiert werden k{\"o}nnen, bzw. wenn dispersive Cu-Cu-Wechselwirkungen m{\"o}glich sind. Der letzte Beweis steht jedoch mit der Isolation anderer polymorpher Phasen und derer photophysikalischen Charakterisierung noch aus. Im letzten Teil dieser Arbeit wurde gezeigt, wie die Deformations und Interaktionsenergie das Koordinationsverhalten und die Reaktivit{\"a}t von d10 [M(NHC)n]-Komplexen beeinflussen k{\"o}nnen. Hierzu wurden die Bildung von d10-[M(NHC)n]-Komplexen (n = 1-4; mit M = Co-, Rh-, Ir-, Ni, Pd, Pt, Cu+, Ag+, Au+, Zn2+, Cd2+ and Hg2+) in der Gasphase und in polarer L{\"o}sung (DMSO) auf DFT-D3(BJ)-ZORA-BLYP/TZ2P-Niveau berechnet und die Bindungssituation der Metall-Carben-Bindung analysiert. Dabei zeigt sich, dass dikoordinierte Komplexe [M(NHC)2] f{\"u}r alle d10-Metalle thermodynamisch stabile Spezies darstellen, jedoch jede weitere h{\"o}here Koordination stark vom Metall bzw. von der Deformationsenergie abh{\"a}ngen. Hier konnte auf Grundlage einer quantitativen Kohn Sham-Molek{\"u}lorbitalbetrachtung die Ursache f{\"u}r die unterschiedlich hohen Werte der Deformationsenergie (ΔEdef) in den NHC‒M‒NHC-Fragmenten aufgekl{\"a}rt werden. Hohe Werte sind auf ein effektives sd-Mischen bzw. auf das σ-Bindungsger{\"u}sts zur{\"u}ckzuf{\"u}hren, w{\"a}hrend niedrige bzw. negative Werte von ΔEdef mit einem signifikanten π-R{\"u}ckbindungsanteil assoziiert sind. Zudem ist ein hoher elektrostatischer Anteil in der Interaktionsenergie ein wichtiger Faktor. So k{\"o}nnen trotz hoher berechneter Werte f{\"u}r die Deformationsenergien der Gruppe 12 (Zn(II), Cd(II) und Hg(II)), tetrakoordinierte Komplexe der Form [M(NHC)4] hohe thermodynamische Stabilit{\"a}t aufweisen. Diese allgemeinen Beobachtungen sollten nicht auf den NHC-Liganden beschr{\"a}nkt sein, und sind deswegen f{\"u}r Synthesen und Katalysezyklen von Bedeutung, in denen d10-MLn (n = 1-4) Komplexe Anwendung finden.}, subject = {Kupferkomplexe}, language = {de} } @phdthesis{Mohrschladt2003, author = {Mohrschladt, Christian J.}, title = {Synthese und Untersuchung der photochemischen und photophysikalischen Eigenschaften Donor-Akzeptor-substituierter Anthracenderivate}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8486}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In der vorliegenden Arbeit wurde gezeigt, dass Donor-Akzeptor-substituierte Anthracen- und Ethenoanthracenderivate bemerkenswerte photophysikalische und photochemische Eigenschaften aufweisen. So bieten derartige Anthracenderivate eine interessante Grundlage sowohl zur Entwicklung von Fluoreszenzsonden beispielsweise f{\"u}r Schwermetallionen wie auch zur Entwicklung von molekularen Schaltern f{\"u}r die Datenverarbeitung. Weiterhin stellen die untersuchten Anthracene und Ethenoanthracene hervorragende Systeme zur systematischen Untersuchung von Substituenteneinfl{\"u}ssen auf Photoreaktionen dar.}, subject = {Anthracenderivate}, language = {de} }