@article{HennigMichalskiRutkowskietal.2018, author = {Hennig, Thomas and Michalski, Marco and Rutkowski, Andrzej J. and Djakovic, Lara and Whisnant, Adam W. and Friedl, Marie-Sophie and Jha, Bhaskar Anand and Baptista, Marisa A. P. and L'Hernault, Anne and Erhard, Florian and D{\"o}lken, Lars and Friedel, Caroline C.}, title = {HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes}, series = {PLoS Pathogens}, volume = {14}, journal = {PLoS Pathogens}, number = {3}, doi = {10.1371/journal.ppat.1006954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176350}, pages = {e1006954}, year = {2018}, abstract = {Lytic herpes simplex virus 1 (HSV-1) infection triggers disruption of transcription termination (DoTT) of most cellular genes, resulting in extensive intergenic transcription. Similarly, cellular stress responses lead to gene-specific transcription downstream of genes (DoG). In this study, we performed a detailed comparison of DoTT/DoG transcription between HSV-1 infection, salt and heat stress in primary human fibroblasts using 4sU-seq and ATAC-seq. Although DoTT at late times of HSV-1 infection was substantially more prominent than DoG transcription in salt and heat stress, poly(A) read-through due to DoTT/DoG transcription and affected genes were significantly correlated between all three conditions, in particular at earlier times of infection. We speculate that HSV-1 either directly usurps a cellular stress response or disrupts the transcription termination machinery in other ways but with similar consequences. In contrast to previous reports, we found that inhibition of Ca\(^{2+}\) signaling by BAPTA-AM did not specifically inhibit DoG transcription but globally impaired transcription. Most importantly, HSV-1-induced DoTT, but not stress-induced DoG transcription, was accompanied by a strong increase in open chromatin downstream of the affected poly(A) sites. In its extent and kinetics, downstream open chromatin essentially matched the poly(A) read-through transcription. We show that this does not cause but rather requires DoTT as well as high levels of transcription into the genomic regions downstream of genes. This raises intriguing new questions regarding the role of histone repositioning in the wake of RNA Polymerase II passage downstream of impaired poly(A) site recognition.}, language = {en} } @article{SbieraTryfonidouWeigandetal.2016, author = {Sbiera, Silviu and Tryfonidou, Marianna A. and Weigand, Isabel and Grinwis, Guy C. M. and Broeckx, Bart and Herterich, Sabine and Allolio, Bruno and Deutschbein, Timo and Fassnacht, Martin and Meij, Bj{\"o}rn P.}, title = {Lack of Ubiquitin Specific Protease 8 (USP8) Mutations in Canine Corticotroph Pituitary Adenomas}, series = {Plos One}, volume = {11}, journal = {Plos One}, number = {12}, doi = {10.1371/journal.pone.0169009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148020}, pages = {e0169009}, year = {2016}, abstract = {Purpose Cushing's disease (CD), also known as pituitary-dependent hyperadrenocorticism, is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary tumours. Affected humans and dogs have similar clinical manifestations, however, the incidence of the canine disease is thousand-fold higher. This makes the dog an obvious model for studying the pathogenesis of pituitary-dependent hyperadrenocorticism. Despite certain similarities identified at the molecular level, the question still remains whether the two species have a shared oncogenetic background. Recently, hotspot recurrent mutations in the gene encoding for ubiquitin specific protease 8 (USP8) have been identified as the main driver behind the formation of ACTH-secreting pituitary adenomas in humans. In this study, we aimed to verify whether USP8 mutations also play a role in the development of such tumours in dogs. Methods Presence of USP8 mutations was analysed by Sanger and PCR-cloning sequencing in 38 canine ACTH-secreting adenomas. Furthermore, the role of USP8 and EGFR protein expression was assessed by immunohistochemistry in a subset of 25 adenomas. Results None of the analysed canine ACTH-secreting adenomas presented mutations in the USP8 gene. In a subset of these adenomas, however, we observed an increased nuclear expression of USP8, a phenotype characteristic for the USP8 mutated human tumours, that correlated with smaller tumour size but elevated ACTH production in those tumours. Conclusions Canine ACTH-secreting pituitary adenomas lack mutations in the USP8 gene suggesting a different genetic background of pituitary tumourigenesis in dogs. However, elevated nuclear USP8 protein expression in a subset of tumours was associated with a similar phenotype as in their human counterparts, indicating a possible end-point convergence of the different genetic backgrounds in the two species. In order to establish the dog as a useful animal model for the study of CD, further comprehensive studies are needed.}, language = {en} } @article{GentschevAdelfingerJosupeitetal.2012, author = {Gentschev, Ivaylo and Adelfinger, Marion and Josupeit, Rafael and Rudolph, Stephan and Ehrig, Klaas and Donat, Ulrike and Weibel, Stephanie and Chen, Nanhai G. and Yu, Yong A. and Zhang, Qian and Heisig, Martin and Thamm, Douglas and Stritzker, Jochen and MacNeill, Amy and Szalay, Aladar A.}, title = {Preclinical Evaluation of Oncolytic Vaccinia Virus for Therapy of Canine Soft Tissue Sarcoma}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {5}, doi = {10.1371/journal.pone.0037239}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129998}, year = {2012}, abstract = {Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.}, language = {en} }