@phdthesis{Kern2022, author = {Kern, Anna}, title = {Vaskularisierung von humanen neuralen Organoiden mit mesodermalen Progenitorzellen}, doi = {10.25972/OPUS-29111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291116}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Viele Organoide sind bisher nur stark vereinfachte Modelle der Originalgewebe, da sie nur aus dem Gewebsparenchym bestehen. Um neurale Organoide n{\"a}her an das Originalgewebe zu bringen, ist ein wichtiger Schritt mesenchymale Anteile zu integrieren. In dieser Arbeit war die wichtige Fragenstellung, ob neurale Organoide sich mit mesodermalen Progenitorzellen zu einem gemeinsamen Gewebe vereinigen lassen. Um die Generierung von neuro-mesenchymalen Organoiden zu erreichen, wurden geeignete Differenzierungsprotokolle zur Erzeugung neuroepithelialer und mesodermaler Aggregate aus humanen induzierten pluripotenten Stammzellen etabliert. Anschließend wurden die Sph{\"a}roide vereinigt und eingehend histologisch charakterisiert. Dar{\"u}ber hinaus wurde die Organoidentwicklung unter dem Einfluss von Hypoxie analysiert. Um die Organoide anschaulich mit der tats{\"a}chlichen Embryogenese vergleichen zu k{\"o}nnen, wurden Schnitte von H{\"u}hnerembryonen angefertigt. Die neuro-mesenchymalen Organoide wurden insgesamt 280 Tage kultiviert und an verschieden Zeitpunkten untersucht. Die hier pr{\"a}sentierten Daten zeigen, dass die erzeugten neuro-mesenchymalen Organoide viele Aspekte der nat{\"u}rlichen Embryogenese in Zellkultur nachahmen k{\"o}nnen. So wurde die Ausbildung neuralrohr{\"a}hnlicher Strukturen, die von einem perineuralen Gef{\"a}ßplexus umgeben sind, gezeigt. Des Weiteren wurde eine Interaktion von Astrozyten/radiale Gliazellen mit dem entstehenden Gef{\"a}ßnetz beobachtet. Schließlich zeigten sich das Einwandern von mikrogliaartigen Zellen aus dem mesenchymalen Organoidteil in das Nervengewebe. Diese Arbeit bildet die Basis f{\"u}r die Generierung neuro-mesenchymaler Organoide als realistisches Modellsystem f{\"u}r die Entwicklung des Nervensystems. Solche Modellsysteme k{\"o}nnen f{\"u}r die Erforschung von Krankheiten, Toxizit{\"a}tsstudien sowie Medikamententests verwendet werden.}, subject = {Organoid}, language = {de} } @phdthesis{Leikeim2022, author = {Leikeim, Anna}, title = {Vascularization Strategies for Full-Thickness Skin Equivalents to Model Melanoma Progression}, doi = {10.25972/OPUS-27295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-272956}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Malignant melanoma (MM) is the most dangerous type of skin cancer with rising incidences worldwide. Melanoma skin models can help to elucidate its causes and formation or to develop new treatment strategies. However, most of the current skin models lack a vasculature, limiting their functionality and applicability. MM relies on the vascular system for its own supply and for its dissemination to distant body sites via lymphatic and blood vessels. Thus, to accurately study MM progression, a functional vasculature is indispensable. To date, there are no vascularized skin models to study melanoma metastasis in vitro, which is why such studies still rely on animal experimentation. In the present thesis, two different approaches for the vascularization of skin models are employed with the aim to establish a vascularized 3D in vitro full-thickness skin equivalent (FTSE) that can serve as a test system for the investigation of the progression of MM. Initially, endothelial cells were incorporated in the dermal part of FTSEs. The optimal seeding density, a spheroid conformation of the cells and the cell culture medium were tested. A high cell density resulted in the formation of lumen-forming shapes distributed in the dermal part of the model. These capillary-like structures were proven to be of endothelial origin by staining for the endothelial cell marker CD31. The established vascularized FTSE (vFTSE) was characterized histologically after 4 weeks of culture, revealing an architecture similar to human skin in vivo with a stratified epidermis, separated from the dermal equivalent by a basement membrane indicated by collagen type IV. However, this random capillary-like network is not functional as it cannot be perfused. Therefore, the second vascularization approach focused on the generation of a perfusable tissue construct. A channel was molded within a collagen hydrogel and seeded with endothelial cells to mimic a central, perfusable vessel. The generation and the perfusion culture of the collagen hydrogel was enabled by the use of two custom-made, 3D printed bioreactors. Histological assessment of the hydrogels revealed the lining of the channel with a monolayer of endothelial cells, expressing the cell specific marker CD31. For the investigation of MM progression in vitro, a 3D melanoma skin equivalent was established. Melanoma cells were incorporated in the epidermal part of FTSEs, representing the native microenvironment of the tumor. Melanoma nests grew at the dermo-epidermal junction within the well stratified epidermis and were characterized by the expression of common melanoma markers. First experiments were conducted showing the feasibility of combining the melanoma model with the vFTSE, resulting in skin models with tumors at the dermo-epidermal junction and lumen-like structures in the dermis. Taken together, the models presented in this thesis provide further steps towards the establishment of a vascularized, perfusable melanoma model to study melanoma progression and metastasis.}, subject = {Tissue Engineering}, language = {en} } @article{GroeberEngelhardtLangeetal.2016, author = {Groeber, Florian and Engelhardt, Lisa and Lange, Julia and Kurdyn, Szymon and Schmid, Freia F. and R{\"u}cker, Christoph and Mielke, Stephan and Walles, Heike and Hansmann, Jan}, title = {A First Vascularized Skin Equivalent as an Alternative to Animal Experimentation}, series = {ALTEX - Alternatives to Animal Experimentation}, volume = {33}, journal = {ALTEX - Alternatives to Animal Experimentation}, number = {4}, doi = {10.14573/altex.1604041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164438}, pages = {415-422}, year = {2016}, abstract = {Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin \& eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.}, language = {en} } @phdthesis{Kremer2019, author = {Kremer, Antje}, title = {Tissue Engineering of a Vascularized Meniscus Implant}, doi = {10.25972/OPUS-18432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The knee joint is a complex composite joint containing the C-shaped wedge-like menisci composed of fibrocartilage. Due to their complex composition and structure, they provide mechanical resilience to the knee joint protecting the articular cartilage. Because of the limited repair potential, meniscal injuries do not only affect the meniscus itself but also lead to altered joint homeostasis and inevitably to secondary osteoarthritis. The meniscus was characterized focusing on its anatomy, structure and meniscal markers such as aggrecan, collagen type I (Col I) and Col II. The components relevant for meniscus tissue engineering, namely cells, Col I scaffolds, biochemical and biomechanical stimuli were studied. Meniscal cells (MCs) were isolated from meniscus, mesenchymal stem cells (MSCs) from bone marrow and dermal microvascular endothelial cells (d-mvECs) from foreskin biopsies. For the human (h) meniscus model, wedge-shape compression of a hMSC-laden Col I gel was successfully established. During three weeks of static culture, the biochemical stimulus transforming growth factor beta-3 (TGF beta-3) led to a compact collagen structure. On day 21, this meniscus model showed high metabolic activity and matrix remodeling as confirmed by matrix metalloproteinases detection. The fibrochondrogenic properties were illustrated by immunohistochemical detection of meniscal markers, significant GAG/DNA increase and increased compressive properties. For further improvement, biomechanical stimulation systems by compression and hydrostatic pressure were designed. As one vascularization approach, direct stimulation with ciclopirox olamine (CPX) significantly increased sprouting of hd-mvEC spheroids even in absence of auxiliary cells such as MSCs. Second, a cell sheet composed of hMSCs and hd-mvECs was fabricated by temperature triggered cell sheet engineering and transferred onto the wedge-shaped meniscus model. Third, a biological vascularized scaffold (BioVaSc-TERM) was re-endothelialized with hd-mvECs providing a viable vascularized network. The vascularized BioVaSc-TERM was suggested as wrapping scaffold of the meniscus model by using two suture techniques, the all-inside-repair (AIR) for the posterior horn, and the outside-in-refixation (OIR) for the anterior horn and the middle part. This meniscus model for replacing torn menisci is a promising approach to be further optimized regarding vascularization, biochemical and biomechanical stimuli.}, subject = {Meniskus}, language = {en} } @phdthesis{Groeber2014, author = {Groeber, Florian}, title = {Etablierung eines vaskularisierten Haut{\"a}quivalentes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107453}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Durch Methoden des Tissue Engineerings hergestellte dreidimensionale Haut{\"a}quivalente bilden die native humane Haut hinsichtlich ihrer histologischen Architektur, zellul{\"a}ren Zusammensetzung und metabolischen Aktivit{\"a}t ab. Diese Gewebe eignen sich daher als zellbasierte Wundauflagen f{\"u}r großfl{\"a}chige Hautdefekte oder als In-vitro-Testsysteme f{\"u}r den Ersatz von Tierversuchen. Bei bisherigen Haut{\"a}quivalenten fehlt jedoch ein funktionelles Blutgef{\"a}ßsystem. Wird solch ein Gewebe als Implantat eingesetzt, f{\"u}hrt das Fehlen von Blutgef{\"a}ßen zu einer unzureichenden Versorgung mit N{\"a}hrstoffen und zur Nekrose. Neben dieser klinischen Limitation ist auch das Anwendungsspektrum als In-vitro-Testsystem begrenzt. Bei nicht vaskularisierten Hautmodellen kann eine transdermale Penetration von Substanzen nicht akkurat abgesch{\"a}tzt werden, da die zus{\"a}tzliche Barriere, welche die gef{\"a}ßauskleidenden Endothelzellen bilden, nicht enthalten ist. In Studien zur Integration eines Gef{\"a}ßsystems in Haut{\"a}quivalente konnte bislang lediglich gezeigt werden, dass sich Endothelzellen zu gef{\"a}ßartigen Strukturen zusammenlagern. Die Bildung von funktionellen perfundierbaren Gef{\"a}ßen in einem in vitro generierten Haut{\"a}quivalent ist bisher jedoch noch nicht belegt. Entsprechend ist eine direkte Anastomose mit dem Blutkreislauf eines Patienten bei einem klinischen Einsatz als Hautimplantat nicht m{\"o}glich. Bei einer Anwendung in In-vitro-Studien ist zudem das Gef{\"a}ßsystem experimentell nicht zug{\"a}nglich. In der vorliegenden Arbeit kann durch die Kombination einer biologischen, vaskularisierten Tr{\"a}gerstruktur (BioVaSc) mit einem neu entwickelten Bioreaktorsystems, ein Haut{\"a}quivalent mit einem perfundierbaren Gef{\"a}ßsystem hergestellt werden. Die Generierung dieser sogenannten SkinVaSc erfolgt {\"u}ber die Besiedlung der BioVaSc mit humanen Keratinozyten (hEK) und Fibroblasten. Parallel dazu werden die eingebetteten Gef{\"a}ßstrukturen der BioVaSc mit humanen mikrovaskul{\"a}ren Endothelzellen (hDMEC) rebesiedelt. Durch eine Anastomose zwischen den Gef{\"a}ßen der BioVaSc und dem Bioreaktorsystem ist eine Perfusion mit physiologisch, gepulsten Dr{\"u}cken zwischen 80 und 120 mmHG m{\"o}glich. Optimale Kulturbedingungen f{\"u}r die Haut- zellen k{\"o}nnen ferner durch zwei Kulturmodi generiert werden. Zur optimalen Versorgung der hEK innerhalb einer Proliferationsphase, die sich an die Zellaussaat anschließt, erfolgt eine kontinuierliche Versorgung der Oberfl{\"a}che der SkinVaSc mit Medium. Der zweite Modus stimuliert die Differenzierung der hEK durch eine Kultivierung des Modells an der Grenzfl{\"a}che zwischen Luft und Medium. Nach einer vierzehnt{\"a}gigen Kultivierung der SkinVaSc an der Luft Medium Grenzfl{\"a}che l{\"a}sst sich die Bildung einer hautspezifischen histologischen Architektur durch H{\"a}malaun/Eosin und immunhistologische F{\"a}rbungen belegen. Eine nat{\"u}rlich differenzierte Epidermis wird durch eine Basalmembran, die Kollagen Typ IV und Laminin 5 enth{\"a}lt von einen dermalen Teil getrennt. Die Dermale-Epidermale-Verbindung erscheint durch die Mikrostrukturierung der BioVaSc wellenf{\"o}rmig. Damit bildet die SkinVaSc die papillare Struktur der nativen humanen Haut ab. Innerhalb des dermalen Anteils k{\"o}nnen zudem Gef{\"a}ßstrukturen ausgemacht werden. Die Innenseite der Gef{\"a}ße sind durch eine Schicht aus hDMEC ausgekleidet, die endothelzellspe- zifische Oberfl{\"a}chenmarker wie "platelet endothelial cell adhesion molecule 1" und "von Willebrand Faktor" aufweisen. Eine zerst{\"o}rungsfreie {\"U}berwachung der SkinVaSc hinsichtlich der epidermalen Differenzierung ist durch eine integrierte Sensortechnologie auf Basis der Impedanz-spektroskopie m{\"o}glich. Dabei erlaubt ein entwickeltes mathematisches Modell die Extraktion von biologisch relevanten Informationen aus Impedanzspektren in einem Frequenzbereich zwischen 1 Hz und 100 kHz. Innerhalb dieser Studien ließ sich zeigen, dass die epidermale Differenzierung zu einer signifikanten Steigerung des ohmschen Widerstandes von 245,3 Ohm*cm2 zu 1108,1 Ohm*cm2 f{\"u}hrt. Gleichzeitig sinkt die zellul{\"a}re Kapazit{\"a}t von 131,5µF/cm2 auf 5,4µF/cm2 ab. Durch diese Parameter ist es m{\"o}glich die epidermale Barriere zerst{\"o}rungsfrei {\"u}ber die Kultivierungszeit zu {\"u}berwachen. Das Gef{\"a}ßsystem der SkinVaSc erm{\"o}glicht es mehr dermatologische Fragestellungen in vitro zu untersuchen und damit Tierversuche zu ersetzen. Zudem kann auf Basis der SkinVaSc ein vaskularisiertes Hautimplantat entwickelt werden, das es erm{\"o}glicht tiefe Hautverletzungen zu behandeln.}, subject = {Tisuue Engineering}, language = {de} }