@phdthesis{Saupe2014, author = {Saupe, Stefanie}, title = {Funktion des Lipidtransferproteins 2 (LTP2) und dessen Rolle bei der Bildung von durch Agrobacterium tumefaciens induzierten Wurzelhalsgallen an Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105449}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In Tumoren an Arabidopsis thaliana, induziert {\"u}ber Agrobacterium tumefaciens (Stamm C58), ist von den 49 bekannten Lipidtransferproteinen (LTPs) nur die Expression von LTP2 stark erh{\"o}ht (Deeken et al., 2006). Mutanten ohne LTP2-Transkripte (ltp2KO) entwickeln deutlich kleinere Tumore als der Wildtyp. Durch die permanenten Zellstreckungs- und Dehnungsprozesse besitzen Tumore keine intakte Epidermis (Efetova et al., 2007). Dies wiederum f{\"u}hrt zum Verlust einer vollst{\"a}ndigen Cuticula-Schicht, welche von der Epidermis produziert wird und dieser als Barriere zur Umwelt aufgelagert ist. Um den transpirationsbedingten Wasserverlust zu minimieren, werden in Tumoren langkettige Aliphaten in die {\"a}ußeren Zellschichten eingelagert (Efetova et al., 2006). Ein {\"a}hnliches Szenario findet um Verwundungsareale statt (Kolattukudy et al., 2001). Die Gen-Expression von LTP2 wird nicht durch tumorinduzierende Agrobakterien ausgel{\"o}st. Faktoren wie Verwundung, sowie die Applikation des Trockenstress-Phytohormons Abscisins{\"a}ure (ABA) beg{\"u}nstigen die LTP2-Gen-Expression positiv. Außerdem ist der LTP2-Promotor in Gewebe aktiv, in welchem sekund{\"a}re Zellwandmodifikationen auftreten, sowie insbesondere in Abscissionsschichten von welkenden Organen. Ungerichtete Lipidanalysen der ltp2KO-Mutante im Vergleich zum Wildtyp zeigten nur signifikante Ver{\"a}nderungen in der Menge definierter Sphingolipide - obwohl bislang eine Beteiligung von LTP2 am Transfer von Phospholipiden postuliert wurde. Allerdings kann das LTP2-Protein, wie Protein-Lipid-Overlay-Analysen demonstrierten, weder komplexen Sphingolipide noch Sphingobasen binden. Neben Sphingobasen sind auch langkettige Fetts{\"a}uren Bestandteile von Sphingolipiden und diese sind wiederum Bindepartner von LTP2. Um eine eventuelle Beteiligung von LTP2 an der Bildung von Suberin von Tumoren zu zeigen, wurde dieses analysiert. Die GC-MS-Analysen des Tumor-Suberins haben jedoch veranschaulicht, dass durch das Fehlen von LTP2-Transkripten das Lipidmuster nicht beeintr{\"a}chtigt wird. Eine {\"U}berexpression von LTP2 im gesamten Kormophyten war trotz drei unabh{\"a}ngiger experimenteller Ans{\"a}tze nicht m{\"o}glich. Daher wurde das Protein ektopisch in epidermalen Zellen exprimiert (CER5Prom::LTP2). Die Transgenen CER5Prom::LTP2 wiesen einige morphologische Besonderheiten auf, wie verminderte Oberfl{\"a}chenhydrophobizit{\"a}t, aberrante Bl{\"u}ten- und Blattmorphologien etc., die typisch f{\"u}r Wachsmutanten sind. GC-MS-Analysen der cuticul{\"a}ren Wachse dieser transgenen Pflanzen zeigten, einen erh{\"o}hten Gehalt an C24- und C26-Fetts{\"a}uren, wohingegen die korrespondierenden Aliphaten wie Aldehyde und Alkane dezimiert waren. Unterst{\"u}tzend zeigten Lokalisationsanalysen, dass das LTP2-Protein an/in der Plasmamembran assoziiert ist. Somit kann die These aufgestellt werden, dass LTP2 langkettigen, unverzweigten Aliphaten (Fetts{\"a}uren) an der Grenzfl{\"a}che Plasmamembran/Zellwand transferiert, die zur Versieglung und Festigung von Zellw{\"a}nden ben{\"o}tigt werden.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Zhang2014, author = {Zhang, Yi}, title = {Regulation of Agrobacterial Oncogene Expression in Host Plants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102578}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Virulent Agrobacterium tumefaciens strains transfer and integrate a DNA region of the tumor-inducing (Ti) plasmid, the T-DNA, into the plant genome and thereby cause crown gall disease. The most essential genes required for crown gall development are the T-DNA-encoded oncogenes, IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) for auxin, and Ipt (isopentenyl transferase) for cytokinin biosynthesis. When these oncogenes are expressed in the host cell, the levels of auxin and cytokinin increase and cause cell proliferation. The aim of this study was to unravel the molecular mechanisms, which regulate expression of the agrobacterial oncogenes in plant cells. Transcripts of the three oncogenes were expressed in Arabidopsis thaliana crown galls induced by A. tumefaciens strain C58 and the intergenic regions (IGRs) between their coding sequences (CDS) were proven to have promoter activity in plant cells. These promoters possess eukaryotic sequence structures and contain cis-regulatory elements for the binding of plant transcription factors. The high-throughput protoplast transactivation (PTA) system was used and identified the Arabidopsis thaliana transcription factors WRKY18, WRKY40, WRKY60 and ARF5 to activate the Ipt oncogene promoter. No transcription factor promoted the activity of the IaaH and IaaM promoters, despite the fact that the sequences contained binding elements for type B ARR transcription factors. Likewise, the treatment of Arabidopsis mesophyll protoplasts with cytokinin (trans-zeatin) and auxin (1-NAA) exerted no positive effect on IaaH and IaaM promoter activity. In contrast, the Ipt promoter strongly responded to a treatment with auxin and only modestly to cytokinin. The three Arabidopsis WRKYs play a role in crown gall development as the wrky mutants developed smaller crown galls than wild-type plants. The WRKY40 and WRKY60 genes responded very quickly to pathogen infection, two and four hours post infection, respectively. Transcription of the WRKY18 gene was induced upon buffer infiltration, which implicates a response to wounding. The three WRKY proteins interacted with ARF5 and with each other in the plant nucleus, but only WRKY40 together with ARF5 increased activation of the Ipt promoter. Moreover, ARF5 activated the Ipt promoter in an auxin-dependent manner. The severe developmental phenotype of the arf5 mutant prevented studies on crown gall development, nevertheless, the reduced crown gall growth on the transport inhibitor response 1 (TIR1) tir1 mutant, lacking the auxin sensor, suggested that auxin signaling is required for optimal crown gall development. In conclusion, A. tumefaciens recruits the pathogen defense related WRKY40 pathway to activate Ipt expression in T-DNA-transformed plant cells. IaaH and IaaM gene expression seems not to be controlled by transcriptional activators, but the increasing auxin levels are signaled via ARF5. The auxin-depended activation of ARF5 boosts expression of the Ipt gene in combination with WRKY40 to increase cytokinin levels and induce crown gall development.}, subject = {Agrobacterium tumefaciens}, language = {en} } @phdthesis{Klinkenberg2011, author = {Klinkenberg, J{\"o}rn}, title = {Physiological Role of Fatty Acid Desaturation in Agrobacterium-induced Arabidopsis Crown Galls}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75262}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Crown gall development is accompanied by hypoxia, drought and oxidative stress. These abiotic stress factors are known to have an impact on fatty acid (FA) desaturation. Thus, an alteration in the lipid profile of plant tumors was expected. A comprehensive lipid analysis of Arabidopsis thaliana crown galls induced by Agrobacterium tumefaciens showed an increase in the degree of FA desaturation. The poly unsaturated fatty acid (PUFA) linolenic acid (18:3) of endoplasmic reticulum (ER) derived phospholipids was especially affected. The increased levels of desaturated FAs were reflected by a strong induction of two genes encoding desaturases, FAD3 and SAD6. In contrast to FAD3, which encodes the ER membrane bound fatty acid desaturase enzyme that synthesizes 18:3 PUFAs in the ER, the function of SAD6 is unknown. The ability of SAD6 to complement the extreme dwarf growth phenotype of the ssi2-2 mutant allele suggests that SAD6 is a functional stearoyl-acyl-carrier-protein delta-9 desaturase (SAD) which catalyzes the first step in FA desaturation and forms stearic acid (18:1). Overexpression of the SAD6 gene in Arabidopsis (SAD6-OE) to a similar degree as in tumors resulted in a light-dependent chlorosis phenotype and caused a similar shift in the lipid profile towards unsaturated phospholipids. Posttranscriptional down-regulation of SAD6 overexpression by RNA reverted the chlorosis phenotype and the changes in the lipid profile, showing that SAD6 overexpression forms the unsaturated FA profile and the phenotype in SAD6-OE. The subcellular localization of the SAD6 protein in chloroplasts, which is obligatory for SAD function was demonstrated. SSI2, which encodes the major contributor to the 18:1 FA levels in Arabidopsis is down-regulated in crown galls pointing to a replacement of SSI2 function by SAD6 in the tumor. SAD6 transcripts were almost undetectable in Arabidopsis under normal growth condition, whereas under hypoxia the gene was strongly activated. In the tumor hypoxia most likely caused the very high transcription of SAD6. Hypoxia is known to limit FA desaturation and it is associated with an elevated reactive oxygen species (ROS) production which is detrimental for unsaturated FAs. Thus, up-regulation of SAD6 in the crown gall, most likely serves as an adaptive mechanism to activate desaturation under low oxygen concentrations and to maintain the levels of unsaturated FA under oxidative stress. The ER localized FAD3 most likely is responsible for the rise in 18:3 of the phospholipid class to cope with drought stress in crown galls. This hypothesis was supported by the loss of function mutant, fad3-2, which developed significantly smaller tumors as the wild type under low relative humidity.Taken together, this study suggests that the induction of SAD6 and FAD3 shapes the tumor lipid profile by increasing the levels of unsaturated FAs. Unsaturated fatty acids prepare the crown gall to cope with ongoing hypoxia, drought and oxidative stress during growth and development.}, subject = {Agrobacterium tumefaciens}, language = {en} } @phdthesis{Efetova2008, author = {Efetova, Marina}, title = {Molekulare Mechanismen einer wechselseitigen Kontrolle der Arabidopsis-Agrobacterium-Interaktion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28475}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Phytohormone sind wichtige Signalmolek{\"u}le bei der durch Agrobacterium tumefaciens vermittelten Tumorgenese. Zum einen sind sie direkt am onkogenen Prozess beteiligt, indem sie die Proliferation von transformierten Zellen f{\"o}rdern und physiologische Anpassungen im entstehenden Tumor steuern. Auf der anderen Seite vermitteln Phytohormone aber auch Abwehrreaktionen der Pflanze als Folge eines Befalls mit onkogenen Pathogenen. Um diese verschiedenen Wirkungen der Phytohormone w{\"a}hrend der Tumorgenese besser zu verstehen, wurde die Genexpression durch Microarrays zu unterschiedlichen Zeitpunken dieses Prozesses an der Modellpflanze Arabidopsis thaliana charakterisiert und die Rolle ausgew{\"a}hlter Phytohormone, wie Abscisins{\"a}ure, Salizyls{\"a}ure, Jasmons{\"a}ure, Ethylen und H2O2 durch Mutanten in entsprechenden Signalwegen funktionell untersucht. Die Ergebnisse dieser Arbeit deuten darauf hin, dass die bekannten Pathogenabwehrwege bei Befall durch onkogene Agrobacterien mit einer zeitlichen Verz{\"o}gerung aktiviert werden. Diese Verz{\"o}gerung wird wahrscheinlich durch das vom Bakterium abgegebene Auxin reguliert, und somit k{\"o}nnte dieses Auxin die Integration der T-DNA indirekt f{\"o}rdern. Sind die pflanzlichen Abwehrmechanismen jedoch vor dem Transformationsprozess aktiviert, wie z.B. in cpr5-Mutanten, kann die T-DNA nicht integrieren und es entsteht kein Tumor. Beim Wildtyp akkumulieren in Folge der T-DNA Integration mit Pathogenabwehr assoziierte Signalmolek{\"u}le, wie H2O2, Ethylen und Salizyls{\"a}ure, nicht aber Jasmons{\"a}ure. Die Analyse des Tumorwachstums an Mutanten mit unterschiedlichen Defekten in diesen Signalwegen zeigte jedoch, daß Ethylen und Salizyls{\"a}ure keinen Einfluß auf das Tumorwachstum haben. Vielmehr regulieren Ethylen und H2O2 morphologische Anpassungen und Adaptationen an Trockenstress in Tumoren. Die von Agrobacterium tumefaciens induzierten Tumore beziehen außer N{\"a}hrstoffe, vor allem Wasser von der Wirtspflanze. Das Fehlen einer intakten Epidermis oder Kutikula f{\"u}hrt allerdings zu unkontrolliertem Wasserverlust. Da aber weder der Tumor noch die Pflanze welken, muss eine Trockenstressadaptation stattzufinden. In dieser Arbeit konnte gezeigt werden, dass die Phytohormone Abscisins{\"a}ure (ABA) und Ethylen an diesem Prozess beteiligt sind. Zum einen regulieren sie die Akkumulation von Osmoregulatoren, sowie Suberineinlagerungen in den {\"a}ußeren Zellschichten des Tumors, wodurch eine dem Periderm {\"a}hnliche Schutzschicht entsteht. Diese Suberinisierung wird im Tumor wahrschein-lich von ABA induziert, wie Experimente an Arabidopsis Wurzeln belegten. Die Microarray-Analysen ergaben, dass im Tumor ein spezielles Muster an ABA- und Trockenstress-induzierten Markergene exprimiert wird, sowie einigen Aquaporinen, die den erh{\"o}hten Wasserbedarf des Tumors regulieren k{\"o}nnten. Das verminderte Tumorwachstum an abi- and aba-Mutanten belegt die Bedeutung von ABA-Signalen f{\"u}r die Homeostase des Wasser-haushalts im Tumor.}, subject = {Agrobacterium tumefaciens}, language = {de} }