@phdthesis{HebronMwalwisi2018, author = {Hebron Mwalwisi, Yonah}, title = {Assessment of Counterfeit and Substandard Antimalarial Medicines using High Performance Thin Layer Chromatography and High Performance Liquid Chromatography}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145821}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Although the prevalence of substandard and counterfeit pharmaceutical products is a global problem, it is more critical in resource-constrained countries. The national medicines regulatory authorities (MNRA) in these countries have limited resources to cater for regular quality surveillance programmes aimed at ensuring that medicines in circulation are of acceptable quality. Among the reasons explained to hinder the implementation of these strategies is that compendial monographs are too complicated and require expensive infrastructures in terms of environment, equipment and consumables. In this study it was therefore aimed at developing simple, precise, and robust HPLC and HPTLC methods utilizing inexpensive, readily available chemicals (methanol and simple buffers) that can determine the APIs, other API than declared one, and which are capable of impurity profiling. As an outcome of this study, three isocratic and robust HPLC and two HPTLC methods for sulfadoxine, sulfalene, pyrimethamine, primaquine, artesunate, as well as amodiaquine have been developed and validated. All HPLC methods are operated using an isocratic elution mode which means they can be implemented even with a single pump HPLC system and standard C18 columns. The densitometric sulfadoxine/sulfalene and pyrimethamine method utilizes standard TLC plates as well as inexpensive, readily available and safe chemicals (toluene, methanol, and ethyl acetate), while that for artesunate and amodiaquine requires HPTLC plates as well as triethylamine and acetonitrile due to challenges associated with the analysis of amodiaquine and poorly the detectable artesunate. These HPTLC methods can be implemented as alternative to those requiring HPLC equipment e.g. in countries that already have acquired densitometer equipment. It is understood that HPTLC methods are less sensitive, precise and accurate when compared to HPLC methods, but this hindrance can easily be addressed by sending representative samples to third party quality control laboratories where the analytical results are verified using compendial HPLC methods on a regular basis. It is therefore anticipated that the implementation of these methods will not only address the problem of limited resources required for medicines quality control but also increase the number of monitored targeted antimalarial products as well as the number of resource- constrained countries participating in quality monitoring campaigns. Moreover, the experiences and skills acquired within this work will be applied to other API groups, e. g. antibiotics, afterwards.}, subject = {Instrumentelle Analytik}, language = {en} }